

Welcome to the Datona-Lib documentation

Version 0.0.2.

This is an alpha version designed for experimental use only.

What is Datona-Lib?

Datona-Lib is an open-source Node.js library that encapsulates the core cryptographic, blockchain, vault and communications features needed to develop on the datona.io [https://datona.io] platform. It is available on github here [https://github.com/Datona-Labs/datona-lib]. It is intended for developers of vault servers, identity apps and requester software, and for those wanting to experiment with Smart Data Access.

Datona-Lib consists of four components:

	datona-crypto implements the core cryptographic functions such as hashing and digital signatures.

	datona-vault allows developers of owner and requester apps to interface with and manage a remote vault without needing to implement the Datona Vault Application-Layer Request Protocol. For developers of vault servers it fully encapsulates the Vault Keeper function.

	datona-comms implements the Datona Application Layer Protocol.

	datona-blockchain provides the interface to Smart Data Access Contracts on the blockchain.

Contents

User Documenation

	What Is Smart Data Access?
	How Does It Work?

	Smart Data Access Contracts

	Life-Cycle of Smart Data

	How To Use
	Requesters

	Owner App Developers

	Vault Service Providers

API Specification

	datona-blockchain
	Constants

	Class Permissions

	Class Contract

	Class GenericSmartDataAccessContract

	Functions

	datona-vault
	Class VaultFilename

	Class RemoteVault

	Class VaultKeeper

	Interface VaultDataServer

	datona-crypto
	Class Key

	Functions

	datona-comms
	Class SmartDataAccessRequest

	Class DatonaConnector

	Functions

	Core Types
	VaultFile

	Application Layer Protocol
	Smart Data Access Contract Interface

	General Protocol

	Smart Data Access Request Protocol

	Vault Request Protocol

	Errors
	Class DatonaError

	Classes of DatonaError

What Is Smart Data Access?

Smart Data Access is a technology that gives individuals control of their online and offline data to combat the rising unethical use and abuse of our data. When someone shares their data with someone else, Smart Data Access acts like a piece of elastic ensuring the owner of the data always knows who has their data and can update or withdraw it any time, wherever the data is held.

From an organisation’s perspective, Smart Data Access helps to automate compliance with data protection regulations and enables new use cases for decentralised applications. It aims to work closely with existing front-end and back-end infrastructure, rather than reinvent it.

From a regulator’s perspective, Smart Data Access is a technological solution to the GDPR 8 Rights For Individuals [https://ico.org.uk/for-organisations/guide-to-data-protection/guide-to-the-general-data-protection-regulation-gdpr/individual-rights/]. In addition it enables new capabilities such as remote auditing and automated auditing of organisations to ensure they are only using data within owners’ permissions.

More details can be found in the Technical White Paper [http://datonalabs.org/documents/WhitePaper.pdf].

How Does It Work?

Data is protected by Smart Data Access software and controlled by a Smart Data Access Contract (S-DAC). The S-DAC is the piece of elastic that connects the owner with their data. It specifies the terms and conditions for the management, use, access, update, expiry and deletion of the data. A Smart Data Access software component, called the Vault Keeper, installed on each data server creates a firewall around the data and ensures it is only accessible if the contract permits it. If the S-DAC is terminated, the Vault Keeper will automatically delete the data. Data protected by a Vault Keeper is said to be in a Vault.

The S-DAC is deployed on the platform’s blockchain - currently Ethereum - so is always accessible from anywhere in the world, whether the data server is available or not. This allows the data owner to indirectly control the data in the vault at any time. The Smart Data Access software in the data server includes a full Ethereum node so has an up-to-date view of all S-DACs on the blockchain and can query contracts locally for high performance.

The data itself can be stored anywhere. Organisations can integrate Smart Data Access into their existing customer databases or can use a third-party ‘data vault’ cloud service. Alternatively, owners can host the data themselves. The data can be accessible from the web or be isolated behind a firewall. It can even be held completely offline, with some limitations.

Smart Data Access can also be used to control single access data shares where the data is used immediately and then deleted. Single access shares do not need the blockchain or a data vault service.

Datona labs hosts an experimental cloud server on the Ethereum testnet at datonavault.com for use by all developers. See How To Use.

Smart Data Access Contracts

An S-DAC must conform to the Datona S-DAC Interface Specification but its implementation is entirely user defined. An S-DAC is a state machine that encodes the life-cycle of the data it controls, specifying who can access the data at what phase and when the owner can update or delete the data. An S-DAC can be as simple or as complex as needed for the particular use case. See Build a Smart Data Access Contract.

At this time, the Datona S-DAC Interface Specification is a minimal specification and will evolve over time. In the future a formal standard will be published.

S-DACs will eventually be designed to contain (or reference) a summary of terms for presentation to and acceptance by the user. To ensure that the terms match the life-cycle encoded in the contract, all S-DACs will need to be independently reviewed and validated by an expert community. It’s possible there will eventually be a community library containing off-the-shelf, pre-validated contract templates for general use and an active community of developers creating and validating bespoke contracts for organisations.

Life-Cycle of Smart Data

[image: _images/primary_use_case-sequence_diagram.png]
The Smart Data Access process begins with a Request for data between the Requester and the data Owner, known as a Smart Data Access Request. This request identifies the S-DAC to be used to control the contract and how to inform the Requester if the request is accepted. (In future the request may also contain the summary of terms and a list of trusted vault services). The request can be presented to the owner in any way. For example, it could be a QR code on a leaflet; a url behind a button on a web page; or a contactless hardware device on a desk. In all cases the data owner initiates the process by applying for the service.

Once the Owner accepts a request their app must deploy the contract to the blockchain, store the data in a vault and finally inform the requester of the contract address and vault service used. The Requester must validate the deployed contract to ensure the correct one has been deployed.

Whenever the requester needs to use the data it can Access the vault. The vault server will check the S-DAC to ensure the Requester is permitted before returning the data. The requester can then use the data and immediately delete its copy. The Requester can access the data any time and as many times as the S-DAC allows.

If the Owner’s information changes, they can Update the data through the vault server’s public api. The vault server will check the S-DAC to ensure the owner is permitted to update the data before updating the vault.

If the use case requires it, the Requester can Write Records back to the vault, for example to pass a policy certificate back to the Owner or to append to a log file. The S-DAC can be configured to give different actors permission to write to different files and directories in the vault.

If the S-DAC permits, the Owner can Delete the data at any time by terminating the contract. Once terminated, any attempt by the Requester to access the vault will be denied. The vault server will periodically check for contract expiry and when found will permanently delete the vault.

How To Use

This section describes the use of datona-lib [https://github.com/Datona-Labs/datona-lib] by the three primary types of developers: Requesters, Owner App Developers and Data Vault Service Providers.

See the Smart Data Access Life-Cycle for the overall process.

	Requesters

	Building a Smart Data Access Contract

	Building a Smart Data Access Request

	Creating a Server to Handle a Smart Data Access Response

	Monitoring For New Contracts

	Accessing a Customer’s Data

	Owner App Developers

	Receiving a Smart Data Access Request

	Accepting a Smart Data Access Request

	Accessing a Vault

	Writing to a Vault

	Deleting a Vault

	Vault Service Providers

	Creating a Data Vault Server

Requesters

Building a Smart Data Access Contract

All S-DACs must comply with the Smart Data Access Contract Interface but the implementation will depend on the use case. S-DACs can be simple, for example to give indefinite access until terminated; or they can be highly complex giving access to different Requesters depending on a complex workflow supported by external blockchain oracles.

Here is an example of a simple contract that automatically terminates after a given number of days. It permits access for a single Requester and permits the Owner or Requester to terminate at any time.

pragma solidity ^0.6.3;

import "SDAC.sol";

contract Duration_SDAC is SDAC {

 address public permittedRequester;
 uint public contractDuration;
 uint public contractStart;
 bool terminated = false;

 modifier onlyOwnerOrRequester {
 require(msg.sender == owner || msg.sender == permittedRequester);
 _;
 }

 constructor(address _permittedRequester, uint _contractDuration) public {
 permittedRequester = _permittedRequester;
 contractDuration = _contractDuration;
 contractStart = block.timestamp;
 }

 function getPermissions(address requester, address file) public view override returns (byte) {
 if (file == address(0) && !hasExpired()) {
 if (requester == owner) return NO_PERMISSIONS | READ_BIT | WRITE_BIT | APPEND_BIT;
 if (requester == permittedRequester) return NO_PERMISSIONS | READ_BIT;
 }
 return NO_PERMISSIONS;
 }

 function isPermitted(address requester) public view returns (bool) {
 return (getPermissions(requester, address(0)) & READ_BIT) > 0;
 }

 function hasExpired() public view override returns (bool) {
 return terminated ||
 (block.timestamp - contractStart) >= (contractDuration * 1 days);
 }

 function terminate() public override onlyOwnerOrRequester {
 terminated = true;
 }

 function getOwner() public view returns (address) {
 return owner;
 }

}

File Permissions

Protocol v0.0.2 introduced file-based read, write and append permissions to S-DACs. This allows a vault to be split into compartments (files and directories) each having different access permissions for different actors. This could be used, for example, to allow the Owner’s name to be accessible to the Requester while their name and address is accessible to a third-party delivery company.

The S-DAC interface does not support standard file names. Each file and directory is instead uniquely identified by a hash. What hash name is given to each file is at the discretion of the user and should form part of the Smart Data Access Request.

The getPermissions function in the S-DAC is responsible for returning the correct permissions for the requester and file passed as its input parameters. Permissions are returned as a single byte of the binary form d----rwa, where d is the most significant bit and if set (1) indicates the file is a directory. The read-bit, write-bit and append-bit will be set (1) if that permission is granted.

Read and write file permissions behave in the standard way. The append permission allows the user to append data to a file but not to overwrite what has been written before. This can be useful for log files and audit trails. The append permission for a directory allows new files to be written to that directory but does not allow existing files to be overwritten. There is no execute permission since files cannot be executed on a vault server.

The distinction between files and directories is in how the vault server responds to an access request. For files the response will contain the data within the file, if the requester is permitted to access it. For directories it will contain a list of filenames. The files within a directory inherit their permissions from the parent directory and must be accessed with separate requests.

Here is an example abstract S-DAC that implements UNIX-like user/group/others permissions for individual files.

pragma solidity ^0.6.3;

import "SDAC.sol";

/*
 * Abstract file based SDAC that allows a vault server to manage multiple files and directories within a vault.
 * Each file or directory has its own unix-like user/group/others permissions of the form rwa (read, write, append).
 *
 * Groups and files are set on construction and remain static throughout the life of the contract. File owner, group and
 * permissions are also set on construction but can be modified later. As with unix file systems only the file's owner
 * can modify its group and permissions. Unlike unix systems there is no admin, root or sudo group.
 */

struct FilePermissions {
 address user;
 address group;
 bytes2 permissions;
}

abstract contract FileBasedSdac is SDAC {

 mapping (address => FilePermissions) internal files;
 mapping (address => mapping(address => bool)) internal groups;

 // Internal permissions bitmap
 uint8 internal constant INTERNAL_PERMISSIONS_USER_BIT = 6;
 uint8 internal constant INTERNAL_PERMISSIONS_GROUP_BIT = 3;
 uint8 internal constant INTERNAL_PERMISSIONS_OTHERS_BIT = 0;
 bytes2 internal constant INTERNAL_PERMISSIONS_DIRECTORY_MASK = 0x0200;
 bytes2 internal constant INTERNAL_PERMISSIONS_USER_WRITE_MASK = 0x0080;

 // create a new user group
 function addGroup(address id, address[] memory users) internal {
 for (uint i=0; i<users.length; i++) {
 groups[id][users[i]] = true;
 }
 }

 // add a new file with the given permissions. Permissions are a 2-byte field with the bit form ------dr warw arwa,
 // reflecting unix-like permissions for user, group, other.
 // e.g. 0x01E0 describes a file (not a directory) with permissions rwar-----
 // i.e. user (owner) has read, write, append permissions, group has read permissions and others have no permissions.
 function addFile(address id, FilePermissions memory permissions) internal {
 files[id] = permissions;
 }

 // File based permissions returned as a byte with the form d----rwa.
 // Mimics unix file permissions:
 // - returns the owner permissions if the requester is the owner of the file
 // - returns the group permissions if the requester is not the owner but belongs to the file's group
 // - returns the other permissions if the requester is neither the owner nor a group member
 // Deliberately does not throw if a file does not exist, returns 0 instead.
 function getPermissions(address requester, address file) public view override returns (byte) {
 address fileOwner = files[file].user;
 address fileGroup = files[file].group;
 byte directoryFlag = files[file].permissions & INTERNAL_PERMISSIONS_DIRECTORY_MASK > 0 ? DIRECTORY_BIT : byte(0);
 if (fileOwner == address(0) || this.hasExpired()) {
 return NO_PERMISSIONS;
 }
 else if (requester == fileOwner) {
 return (byte)(files[file].permissions >> INTERNAL_PERMISSIONS_USER_BIT) & ALL_PERMISSIONS | directoryFlag;
 }
 else if (groups[fileGroup][requester]) {
 return (byte)(files[file].permissions >> INTERNAL_PERMISSIONS_GROUP_BIT) & ALL_PERMISSIONS | directoryFlag;
 }
 else {
 return (byte)(files[file].permissions >> INTERNAL_PERMISSIONS_OTHERS_BIT) & ALL_PERMISSIONS | directoryFlag;
 }
 }

 // change a file's permissions
 function chmod(address file, bytes2 permissions) public {
 require(files[file].user == msg.sender, 'Operation not permitted');
 require((files[file].permissions & INTERNAL_PERMISSIONS_USER_WRITE_MASK) > 0, 'Operation not permitted');
 files[file].permissions = permissions;
 }

 // change a file's owner
 function chown(address file, address user) public {
 require(files[file].user == msg.sender, 'Operation not permitted');
 require((files[file].permissions & INTERNAL_PERMISSIONS_USER_WRITE_MASK) > 0, 'Operation not permitted');
 files[file].user = user;
 }

 // change a file's owner and group
 function chown(address file, address user, address group) public {
 chown(file, user);
 files[file].group = group;
 }

 // change a file's group
 function chgrp(address file, address group) public {
 require(files[file].user == msg.sender, 'Operation not permitted');
 require((files[file].permissions & INTERNAL_PERMISSIONS_USER_WRITE_MASK) > 0, 'Operation not permitted');
 files[file].group = group;
 }

}

Building a Smart Data Access Request

Here is an example Smart Data Access Request Packet for passing to a data owner. The hash in this request is a hash of the runtime bytecode of the Duration_SDAC above. The url in this request is the URL of the Requester’s server that will handle a Smart Data Access Response Packet from the Owner.

In this case the Requester has added a customerId field to the accept and reject transaction templates. This number will be added to the response that the Owner returns to the Requester.

{
 "txnType": "SmartDataAccessRequest",
 "version": "0.0.1",
 "contract": {
 "hash": "5573012304cc4d87a7a07253c728e08250db6821a3dfdbbbcac9a24f8cd89ad4",
 },
 "api": {
 "url": {
 "scheme": "file",
 "host": "my.server.io",
 "port": "8601"
 },
 "acceptTransaction": {
 "customerId": "10001"
 },
 "rejectTransaction": {
 "customerId": "10001"
 }
 }
}

Creating a Server to Handle a Smart Data Access Response

If the Owner accepts the Smart Data Access Request then they will inform the Requester of the S-DAC’s blockchain address and where the data is being held. To do this the Requester must run a server to handle the Smart Data Access Response Packet.

Example of a basic server. When handling a response the server must perform some validation on the deployed contract. As a minimum it must check that the deployed contract is of the expected type by checking its runtime bytecode. In this example it also checks that the signatory of the response is the owner of the contract.

const datona = require('datona-lib');
const assert = datona.assertions;

//
// Constants
//

const myKey = new datona.crypto.key("e68e40257cfee330038c49637fcffff82fae04b9c563f4ea071c20f2eb55063c");
const sdacHash = "5573012304cc4d87a7a07253c728e08250db6821a3dfdbbbcac9a24f8cd89ad4";
const sdacSourceCode = require("./contracts/" + sdacHash + ".json");

//
// Server
//

var customers = [];

const myServer = net.createServer(connection);
myServer.listen(8601);

connection(c){

 c.on('data', (buffer) => {
 try {
 // Decode the transaction and validate the structure of the response packet. These will throw if not valid
 const txn = datona.comms.decodeTransaction(data);
 const sdaResponse = txn.txn;
 assert.equals(sdaResponse.txnType, "SmartDataAccessResponse", "SDA Response is invalid: txnType")

 // Handle depending on the response type
 switch (sdaResponse.responseType) {
 case "accept":
 assert.isAddress(sdaResponse.contract, "SDA Response is invalid: contract")
 assert.isAddress(sdaResponse.vaultAddress, "SDA Response is invalid: vaultAddress")
 assert.isUrl(sdaResponse.vaultUrl, "SDA Response is invalid: vaultUrl")

 // Connect to the Owner's S-DAC on the blockchain
 const contract = new datona.blockchain.Contract(sdacSourceCode.abi, sdaResponse.contract);

 // Verify the signatory is the owner of the contract and that the correct contract has been deployed,
 contract.assertOwner(txn.signatory)
 .then(() => { contract.assertBytecode(sdacSourceCode.runtimeBytecode) })
 .then(() => {
 // Contract is valid so record the new customer and return a success response
 customers.push(txn.data);
 sendResponse(datona.comms.createSuccessResponse());
 })
 .catch((error) => {
 sendResponse(datona.comms.createErrorResponse(error));
 });
 break;
 case "reject":
 logger.log("Customer reject: "+sdaResponse.reason);
 sendResponse(datona.comms.createSuccessResponse());
 break;
 default:
 throw new datona.errors.TransactionError("Invalid responseType: "+sdaResponse.responseType);
 }
 }
 catch (error) {
 sendResponse(datona.comms.createErrorResponse(error));
 }
 });

}

function sendResponse(c, response) {
 c.write(encodeTransaction(response, myKey));
 c.end();
}

Monitoring For New Contracts

An alternative to using a server to receive Smart Data Access Responses is to monitor the blockchain directly for new vaults that you are permitted to access. This method will only work if you know the address and url of the vault server used by all customers, or if you require customers to identify the vault service in the contract itself. The datona-blockchain subscribe function supports the registering of a callback to be called whenever a new contract of a given type (with a given runtime bytecode) is deployed on the blockchain and you are permitted to access the data it controls.

Example:

const myContract = require("../contracts/myContract.json");
const subscription = subscribe(datona.crypto.hash(myContract.runtimeBytecode), registerNewCustomer, myKey.address);

function registerNewCustomer(contractAddress) {
 const newCustomer = { contract: contractAddress };
 customers.push(newCustomer);
}

Accessing a Customer’s Data

To access a data from a customer’s vault you will need the contract address, vault URL and vault server’s public address from the SmartDataAccessResponse received from the data owner. The datona-vault RemoteVault class is used to access the vault.

const customer = customers[0];
const remoteVault = new RemoteVault(customer.vaultUrl, customer.contract, myKey, customer.vaultAddress);

remoteVault.read()
 .then((data) => { console.log("vault contains: "+data))
 .catch(console.error);

If the vault contains specific files then they should be read individually:

const customersFolder = "0xF000000000000000000000000000000000000001"

remoteVault.read(customersFolder)
 .then((data) => { console.log("folder contains files:\n"+data))
 .catch(console.error);

remoteVault.read(customersFolder+"/name")
 .then((data) => { console.log("Customer name: "+data))
 .catch(console.error);

remoteVault.read(customersFolder+"/email")
 .then((data) => { console.log("Customer email: "+data))
 .catch(console.error);

Owner App Developers

Receiving a Smart Data Access Request

A Smart Data Access Request is passed from Requester to Owner as a Signed Transaction. Once received, the SmartDataAccessRequest class is used to decode and validate it. The app can then display the request to the Owner for acceptance or rejection.

const datona = require('datona-lib');

const myKey = new datona.crypto.key("b94452c533536500e30f2253c96d123133ca1cbdb987556c2dc229573a2cd53c");

const request = new datona.comms.SmartDataAccessRequest(signedTxnStr, myKey);

Accepting a Smart Data Access Request

The following example demonstrates the use of the Contract class to deploy a new S-DAC on the blockchain, and the RemoteVault class to create the vault. It uses the accept method of the SmartDataAccessRequest class to inform the Requester.

const vaultServerAddress = "0x288b32F2653C1d72043d240A7F938a114Ab69584",

const vaultUrl = {
 scheme: "file",
 host: "datonavault.com",
 port: 8964
}

var myDataShares = [];

//
// Accept Request
//

// Read contract bytecode and ABI from file system and create a Contract object
const contractSourceCode = require("./contracts/" + request.data.contract.hash);
const sdac = new datona.blockchain.Contract(contractSourceCode.abi);

// Function to create a new vault and store the data. Returns a Promise.
function createAndDeployVault(){
 const vault = new datona.vault.RemoteVault(vaultUrl, sdac.address, myKey, vaultServerAddress);
 return vault.create()
 .then(vault.write("Hello World!"));
}

// Function to send the contract address and vault URL to the requester. Returns a Promise.
function recordContractAndInformRequester(){
 myDataShares.push({
 contract: sdac.address,
 vault: {
 address: vaultServerAddress,
 url: vaultUrl
 }
 });
 return request.accept(sdac.address, vaultServerAddress, vaultUrl);
}

// Deploy the contract, create the vault and inform the requester
sdac.deploy(myKey, contractSourceCode.bytecode, [request.signatory])
 .then(createAndDeployVault)
 .then(recordContractAndInformRequester)
 .catch(console.error);

Accessing a Vault

To access all data in the vault use the datona-vault RemoteVault class, in the same way as a Requester accesses a customer’s data above.

const dataShare = myDataShares[0];

const remoteVault = new RemoteVault(dataShare.vault.url, dataShare.contract, myKey, dataShare.vault.address);

remoteVault.read()
 .then((data) => { console.log("vault contains: "+data))
 .catch(console.error);

Reading from a Specific Vault File

To read the data from a specific file in the vault include the filename as part of the read request.

remoteVault.read("0xF000000000000000000000000000000000000001/name.txt")
 .catch(console.error);

In this case the file is name.txt and it inherits its permissions from the parent directory 0xF000000000000000000000000000000000000001. The permissions for this directory must be encoded in the contract.

Listing a Directory

If the contract supports directories then its possible to list the files held a directory by simply reading it.

remoteVault.read("0xF000000000000000000000000000000000000001")
 .then(console.log);
 .catch(console.error);

If 0xF000000000000000000000000000000000000001 is a directory (has the directory bit set in its contract permissions) then the vault server will return a list of names of all the files in the vault directory, separated by newlines. If the file is not a directory then the contents of the file will be returned.

Writing to a Vault

To write (or overwrite) the data in the vault use the RemoteVault class.

const dataShare = myDataShares[0];

const remoteVault = new RemoteVault(dataShare.vault.url, dataShare.contract, myKey, dataShare.vault.address);

remoteVault.write("Hi World!")
 .catch(console.error);

Writing to a Specific Vault File

To write (or overwrite) the data in a file include the filename as part of the write request.

remoteVault.write("Barney Rubble", "0xF000000000000000000000000000000000000001/name.txt")
 .catch(console.error);

In this case the file is name.txt and it inherits its permissions from the parent directory 0xF000000000000000000000000000000000000001. The permissions for this directory must be encoded in the contract.

Appending to a Specific Vault File

Appending data to a file is done in the same way as writing but uses the append method.

const logfile = "0xF000000000000000000000000000000000000002";

remoteVault.append("\nThu 16 Apr 2020 14:34:47 BST - Name updated", logfile)
 .catch(console.error);

Deleting a Vault

To delete the data in the vault simply terminate the contract. No-one can access the vault once the contract has been terminated, and the data vault server will delete the data when it next checks the contract. If required the delete method of the RemoteVault class can be used to force the Data Vault Server to delete the data right away (not shown).

const dataShare = myDataShares[0];

// Read contract bytecode and ABI from file system and create a Contract object
const contractSourceCode = require("./contracts/" + dataShare.contract.hash);
const sdac = new datona.blockchain.Contract(contractSourceCode.abi, dataShare.contract);

// Terminate contract
sdac.terminate(myKey)
 .catch(console.error);

Vault Service Providers

Creating a Data Vault Server

A Data Vault Server can be a public cloud-based service, a locally hosted server within an organisation or a home-based server. Whatever the type of server, it must implement the Datona Application Layer Protocol and undertake the appropriate permission checks before accepting a create, update, access or delete request.

The Datona Lib VaultKeeper class provides these capabilities leaving the developer to implement the server’s data layer. The VaultKeeper provides the following capabilities:

	decoding and validating incoming SignedTransaction packets and the VaultRequest packet within;

	verifying the appropriate permissions for accepting requests against the S-DAC on the blockchain;

	if permitted, calls a user-defined VaultDataServer instance to handle the request;

	constructing the appropriate success or error VaultResponse packet and encoding it as a SignedTransaction.

[image: _images/vault_server-class_diagram.png]
The diagram above shows the class relationships between the user-defined classes in black and the datona-lib classes in blue. The user-defined DataServer class must implement the VaultDataServer interface and promise to handle the 4 types of data request. All permission checks will have already been performed by the VaultKeeper so the DataServer need only perform the requests unconditionally.

Example bare-minimal server and VaultDataServer implementation. This example is a plain TCP server. It could instead be written as an HTTP or WebSocket server.

const datona = require("datona-lib");
const net = require('net');

const myKey = new datona.crypto.Key("ae139af24306ecac804cfe974398d6d76361287d7b96d9e165d9bcb99a64b6ce");

//
// Example Server. Has no logging or sigterm detection.
//

const vaultManager = new RamBasedVaultDataServer();
const vaultKeeper = new datona.vault.VaultKeeper(vaultManager, myKey);
const server = net.createServer(connection);

function connection(c){

 c.on('data', (buffer) => {
 vaultKeeper.handleSignedRequest(buffer.toString())
 .then((response) => {
 c.write(response);
 c.end();
 })
 .catch(console.error); // should never happen
 });

}

//
// Example VaultDataServer. All vaults are held in RAM!
//

class RamBasedVaultDataServer extends datona.vault.VaultDataServer {

 constructor() {
 super();
 this.vaults = {};
 }

 create(contract) {
 if (this.vaults[contract] != undefined) {
 throw new datona.errors.VaultError("attempt to create a vault that already exists: " + contract);
 }
 }

 write(contract, file, data) {
 if (this.vaults[contract] == undefined) {
 throw new datona.errors.VaultError("attempt to write to a vault that does not exist: " + contract);
 }
 this.vaults[contract][file] = data;
 };

 append(contract, file, data) {
 if (this.vaults[contract] == undefined) {
 throw new datona.errors.VaultError("attempt to append to a vault that does not exist: " + contract);
 }
 if (this.vaults[contract][file] === undefined) { this.vaults[contract][file] = data; }
 else this.vaults[contract][file] += data;
 };

 read(contract, file) {
 if (this.vaults[contract] == undefined) {
 throw new datona.errors.VaultError("attempt to access a vault that does not exist: " + contract);
 }
 if (this.vaults[contract][file] === undefined) {
 throw new datona.errors.VaultError("attempt to access a file that does not exist: " + contract+"/"+file);
 }
 return this.vaults[contract];
 };

 readDir(contract, dir) {
 if (this.vaults[contract] === undefined) {
 throw new datona.errors.VaultError("attempt to access a vault that does not exist: " + contract);
 }
 var contents = "";
 for (var file in this.vaults[contract]) {
 if (file.substring(0,43) === dir+"/") contents += (contents.length===0) ? file.substring(43) : "\n"+file.substring(43);
 }
 return contents;
 };

 delete(contract) {
 if (this.vaults[contract] == undefined) {
 throw new datona.errors.VaultError("attempt to delete a vault that does not exist: " + contract);
 }
 this.vaults[contract] = undefined;
 };

}

datona-blockchain

Gives access to the Datona blockchain (Ethereum right now), providing functions to deploy, manage and access S-DACs. Is designed to be used by both owner-end software (identity apps) and vault software. Uses web3 [https://github.com/ethereum/web3.js].

Constants

	ZERO_ADDRESS (Address) = "0x00"

Class Permissions

Encapsulates file/directory permissions returned by the getPermissions method of an SDAC. Provides accessor functions to read properties of the permissions.

Properties

	permissions (byte) - the raw permissions provided to the constructor. Is expected to be of the form specified in the SDAC Interface.

Constructor

Decodes a raw permissions byte.

new Permissions(permissionsByte);

Parameters

	permissionsByte (byte or String) - the raw permissions byte either as an integer or a string of the form 0xNN.

Throws

	TypeError if the permissionsByte is a string and does not have the form 0xNN

Example

// using string format
const permissions = new Permissions("0x87");

// using byte returned from contract
myContract.getPermissions(myAddress)
 .then(function(rawPermissions) {
 const permissions = new Permissions(rawPermissions);
 if (permissions.canRead()) { ...
 }
 });

canRead

Accesses the READ bit in the raw permissions.

if (permissions.canRead()) { ... }

Returns

boolean - true if the bit is set in the raw permissions.

canWrite

Accesses the WRITE bit in the raw permissions.

if (permissions.canWrite()) { ... }

Returns

boolean - true if the bit is set in the raw permissions.

canAppend

Accesses the APPEND bit in the raw permissions.

if (permissions.canAppend()) { ... }

Returns

boolean - true if the bit is set in the raw permissions.

isDirectory

Accesses the DIRECTORY bit in the raw permissions.

if (permissions.isDirectory()) { ... }

Returns

boolean - true if the bit is set in the raw permissions.

Class Contract

Represents a Smart Data Access Contract on the blockchain. Provides functions to interact with the contract.

Constants

Bit masks for the permissions byte returned by a Smart Data Access Contract:

	static NO_PERMISSIONS (byte) = 0x00

	static ALL_PERMISSIONS (byte) = 0x07;

	static READ_BIT (byte) = 0x04;

	static WRITE_BIT (byte) = 0x02;

	static APPEND_BIT (byte) = 0x01;

	static DIRECTORY_BIT (byte) = 0x80;

Reserved Addresses used by a Smart Data Access Contract:

	static ROOT_DIRECTORY (Address) = "0x00";

Properties

	address (Address) - the public blockchain address of the contract. Will be undefined unless given in the constructor, set using setAddress, or deployed using the deploy function.

Constructor

Creates a new Contract instance. Connects with the blockchain (if not connected already).

new Contract(abi, [address]);

Parameters

	abi (Object) - The smart contract’s abi [https://solidity.readthedocs.io/en/latest/abi-spec.html]

	address (Address) - (Optional) The address of the contract on the blockchain, if already deployed. Exclude if constructing a new contract. Note, the address can be set later via setAddress if preferred.

Throws

	BlockchainError - if it can’t connect with the blockchain or the abi is invalid.

Example

const myContract = require("../contracts/myContract.json");
const contract = new Contract(myContract.abi);

setAddress

Sets the address of this contract on the blockchain. Can be used as an alternative to passing it in the constructor.

setAddress(address);

Parameters

	address (Address) - address of the contract on the blockchain

Throws

	BlockchainError - if the address is already set

Example

const myContract = require("../contracts/myContract.json");
const contract = new Contract(myContract.abi);
contract.setAddress("0xfb3e6dd29d01c1b5b99e46db3fe26df1138b73d1");

deploy

Deploys this contract on the blockchain.

deploy(key, bytecode, [constructorArgs]);

Parameters

	key (Key) - the Datona Key object used to sign the transaction

	bytecode (string) - the contract creation bytecode (in hex with no leading 0x)

	constructorArgs (Array) - (Optional) arguments to pass to the contract’s constructor

Returns

Promise - A promise to deploy the contract on the blockchain, returning the contract address.

Resolves With

Address - The blockchain address of the deployed contract. Resolves after the transaction has been mined.

Rejects With

	BlockchainError - if deployment failed. If the blockchain VM reverted the transaction then examine the blockchain receipt in the error details.

Throws

	BlockchainError - if the bytecode is invalid

Example

const myContract = require("../contracts/myContract.json");
const contract = new Contract(myContract.abi);

var contractAddress;

contract.deploy(myKey, myContract.bytecode, [1, requesterAddress])
 .then(function(address){
 contractAddress = address;
 const vault = new datona.vault.RemoteVault(vaultUrl, contractAddress, myKey);
 return vault.write("Hello World");
 })
 .catch(function(error){
 console.error(error);
 });

getOwner

Gets the owner of the contract

getOwner();

Returns

Promise - A promise to return owner’s address

Resolves With

Address - The owner’s address

Rejects With

	BlockchainError - if the contract owner could not be retrieved from the blockchain.

Throws

	BlockchainError - if the contract hasn’t been deployed or mapped to a blockchain address.

Example

const myContract = require("../contracts/myContract.json");
const contract = new Contract(myContract.abi, myContractAddress);

contract.getOwner()
 .then(console.log)
 .catch(console.error);

hasExpired

Resolves true if the smart data access contract has expired.

hasExpired();

Returns

Promise - A promise to return the expiry status

Resolves With

boolean - True if the contract has expired. False otherwise.

Rejects With

	BlockchainError - if the expiry status could not be retrieved from the blockchain.

Throws

	BlockchainError - if the contract hasn’t been deployed or mapped to a blockchain address.

Example

const myContract = require("../contracts/myContract.json");
const contract = new Contract(myContract.abi, myContractAddress);

contract.hasExpired()
 .then(function(expired){
 if (expired) {
 console.log("contract has expired");
 }
 })
 .catch(console.error);

getPermissions

Promises to call the contract’s getPermissions method and return the permissions byte as a Permissions object.

getPermissions(requester, [file]);

Parameters

	requester (Address) - the address of the requester that wants to read the data

	file (Address) - (Optional) the specific file to check. Defaults to the ROOT_DIRECTORY if not given.

Returns

Promise - A promise to return the permissions byte encapsulated in a Permissions object

Resolves With

Permissions - the Permissions object representing the permissions byte returned by the SDAC.

Rejects With

	BlockchainError - if the permission status could not be retrieved from the blockchain.

Throws

	BlockchainError - if the contract hasn’t been deployed or mapped to a blockchain address.

Example

const myContract = require("../contracts/myContract.json");
const contract = new Contract(myContract.abi, myContractAddress);
const fileId = "0x0000000000000000000000000000000000000001";
const vaultUrl = "file://datonavault.com:8124";
const vaultOwner = "0x288b32F2653C1d72043d240A7F938a114Ab69584";

contract.getPermissions(myKey.address, fileId)
 .then(function(permissions){
 if (permissions.canRead() && !permissions.isDirectory()) {
 const vault = new datona.vault.RemoteVault(vaultUrl, contract.address, myKey, vaultOwner);
 return vault.read(fileId);
 }
 })
 .catch(console.error);

canRead

Resolves true if the owner of the given address is permitted to read the data from a given file in the vault controlled by this contract.

canRead(requester, [file]);

Parameters

	requester (Address) - the address of the requester that wants to read the data

	file (Address) - (Optional) the specific file to check. Defaults to the ROOT_DIRECTORY if not given.

Returns

Promise - A promise to return the permission status

Resolves With

boolean - True if the address is permitted to read the file. False otherwise.

Rejects With

	BlockchainError - if the permission status could not be retrieved from the blockchain.

Throws

	BlockchainError - if the contract hasn’t been deployed or mapped to a blockchain address.

Example

const myContract = require("../contracts/myContract.json");
const contract = new Contract(myContract.abi, myContractAddress);
const fileId = "0x0000000000000000000000000000000000000001";
const vaultUrl = "file://datonavault.com:8124";
const vaultOwner = "0x288b32F2653C1d72043d240A7F938a114Ab69584";

contract.canRead(myKey.address, fileId)
 .then(function(permitted){
 if (permitted) {
 const vault = new datona.vault.RemoteVault(vaultUrl, contract.address, myKey, vaultOwner);
 return vault.read(fileId);
 }
 })
 .catch(console.error);

canWrite

Resolves true if the owner of the given address is permitted to write to (or overwrite) a given file or directory in the vault controlled by this contract.

If permitted to write to a directory, the user can add a new file to the directory or can overwrite any file within that directory.

canWrite(requester, [file]);

Parameters

	requester (Address) - the address of the requester that wants to write to the file

	file (Address) - (Optional) the specific file or directory to check. Defaults to the ROOT_DIRECTORY if not given.

Returns

Promise - A promise to return the permission status

Resolves With

boolean - True if the address is permitted to write to the file. False otherwise.

Rejects With

	BlockchainError - if the permission status could not be retrieved from the blockchain.

Throws

	BlockchainError - if the contract hasn’t been deployed or mapped to a blockchain address.

Example

const myContract = require("../contracts/myContract.json");
const contract = new Contract(myContract.abi, myContractAddress);
const fileId = "0x0000000000000000000000000000000000000001";
const vaultUrl = "file://datonavault.com:8124";
const vaultOwner = "0x288b32F2653C1d72043d240A7F938a114Ab69584";

contract.canWrite(myKey.address, fileId)
 .then(function(permitted){
 if (permitted) {
 const vault = new datona.vault.RemoteVault(vaultUrl, contract.address, myKey, vaultOwner);
 return vault.write("hello world", fileId);
 }
 })
 .catch(console.error);

canAppend

Resolves true if the owner of the given address is permitted to append to (or overwrite) a given file or directory in the vault controlled by this contract.

If permitted to append to a directory, the user can add a new file to the directory or can append to any file within that directory. It does not mean that existing files in that directory are (over)writable - use canWrite to determine this.

canAppend(requester, [file]);

Parameters

	requester (Address) - the address of the requester that wants to append to the file

	file (Address) - (Optional) the specific file to check. Defaults to the ROOT_DIRECTORY if not given.

Returns

Promise - A promise to return the permission status

Resolves With

boolean - True if the address is permitted to append to the file. False otherwise.

Rejects With

	BlockchainError - if the permission status could not be retrieved from the blockchain.

Throws

	BlockchainError - if the contract hasn’t been deployed or mapped to a blockchain address.

Example

const myContract = require("../contracts/myContract.json");
const contract = new Contract(myContract.abi, myContractAddress);
const fileId = "0x0000000000000000000000000000000000000001";
const vaultUrl = "file://datonavault.com:8124";
const vaultOwner = "0x288b32F2653C1d72043d240A7F938a114Ab69584";

contract.canAppend(myKey.address, fileId)
 .then(function(permitted){
 if (permitted) {
 const vault = new datona.vault.RemoteVault(vaultUrl, contract.address, myKey, vaultOwner);
 return vault.append("some more info", fileId);
 }
 })
 .catch(console.error);

getBytecode

Gets the runtime bytecode of this contract from the blockchain

getBytecode();

Returns

Promise - A promise to return the bytecode

Resolves With

String - The runtime bytecode (in hex)

Rejects With

	BlockchainError - if the bytecode could not be retrieved from the blockchain.

Throws

	BlockchainError - if the contract hasn’t been deployed or mapped to a blockchain address.

Example

const myContract = require("../contracts/myContract.json");
const contract = new Contract(myContract.abi, myContractAddress);

contract.getBytecode()
 .then(console.log)
 .catch(console.error);
> 60806040526004361061009e576000357c0100000000000...

call

Calls the given view or pure contract method with the given arguments. Use transact to call a state-modifying method instead.

call(method, [args);

Parameters

	method (String) - the name of the contract method to call

	args (Array) - (Optional) arguments to pass to the method

Returns

Promise - A promise to return the output from the method.

Resolves With

The datatype that the contract method returns, e.g. string, boolean, integer.

Rejects With

	BlockchainError - if the call failed. Examine the error details for more information.

Throws

	BlockchainError - if the contract hasn’t been deployed or mapped to a blockchain address, the method does not exist or the method arguments are invalid.

Example

const myContract = require("../contracts/myContract.json");
const contract = new Contract(myContract.abi);

contract.call("isPermitted", [myKey.address])
 .then(function(permitted){
 console.log("isPermitted returned "+permitted);
 })
 .catch(console.error);
> isPermitted returned true

transact

Calls the given state-modifying contract method with the given arguments. Use call to call a view or pure method instead.

call(key, method, [args], [options]);

Parameters

	key (Key) - the key used to sign the transaction

	method (String) - the name of the contract method to call

	args (Array) - (Optional) arguments to pass to the method

	options (Object) - (Optional) any fields in this object will be included in the blockchain transaction

Returns

Promise - A promise to return the output from the method.

Resolves With

The datatype that the contract method returns, e.g. string, boolean, integer. Resolves after the transaction has been mined.

Rejects With

	BlockchainError - if the call failed. Examine the error details for more information.

Throws

	BlockchainError - if the contract hasn’t been deployed or mapped to a blockchain address, the method does not exist or the method arguments are invalid.

Example

// In this example the user has created a smart contract with an additional 'pay(address payee)' method

const myContract = require("../contracts/myContract.json");
const contract = new Contract(myContract.abi);

contract.transact(myKey, "pay", [theirAddress], {value: 100})
 .then(function(){
 console.log("payment successful");
 })
 .catch(console.error);

terminate

Terminates this contract by calling it’s terminate method.

terminate(key);

Parameters

	key (Key) - the key used to sign the transaction

Returns

Promise - A promise to attempt to terminate the contract

Resolves With

Resolves with no data if successful. Resolves after the transaction has been mined.

Rejects With

	BlockchainError - if the contract could not be terminated.

Throws

	BlockchainError - if the contract hasn’t been deployed or mapped to a blockchain address.

Example

const myContract = require("../contracts/myContract.json");
const contract = new Contract(myContract.abi, myContractAddress);

contract.terminate()
 .then(function(){
 console.log("contract terminated");
 })
 .catch(console.error);

assertBytecode

Asserts that the contract’s runtime bytecode equals the expected bytecode given.

assertBytecode(expectedBytecode);

Parameters

	expectedBytecode (String) - the bytecode to test

Returns

Promise - A promise to resolve if the bytecodes match, and to reject if not.

Resolves With

Resolves with no data if the contract’s bytecode matches the bytecode given.

Rejects With

	ContractTypeError - if the bytecodes do not match

	BlockchainError - if the bytecode could not be retrieved from the blockchain.

Throws

	BlockchainError - if the contract hasn’t been deployed or mapped to a blockchain address.

Example

const myContract = require("../contracts/myContract.json");
const contract = new Contract(myContract.abi, myContractAddress);

contract.assertBytecode(myContract.runtimeBytecode)
 .then(function(){
 console.log("contract bytecode is as expected");
 })
 .catch(console.error);

assertOwner

Asserts that the contract’s runtime bytecode equals the expected bytecode given.

assertOwner(expectedOwner);

Parameters

	expectedOwner (Address) - the owner address to test

Returns

Promise - A promise to resolve if the addresses match, and to reject if not.

Resolves With

Resolves with no data if the contract’s owner matches the address given.

Rejects With

	ContractOwnerError - if the owner does not match

	BlockchainError - if the owner could not be retrieved from the blockchain.

Throws

	BlockchainError - if the contract hasn’t been deployed or mapped to a blockchain address.

Example

const myContract = require("../contracts/myContract.json");
const contract = new Contract(myContract.abi, myContractAddress);

contract.assertOwner(myKey.address)
 .then(function(){
 console.log("I am the owner of contract "+contract.address);
 })
 .catch(console.error);

assertNotExpired

Resolves provided the contract has not expired.

assertNotExpired();

Returns

Promise - A promise to resolve if the contract has not expired, and to reject if not.

Resolves With

Resolves with no data if the contract has not expired.

Rejects With

	ContractExpiryError - if the contract has expired

	BlockchainError - if the expiry status could not be retrieved from the blockchain.

Throws

	BlockchainError - if the contract hasn’t been deployed or mapped to a blockchain address.

Example

const myContract = require("../contracts/myContract.json");
const contract = new Contract(myContract.abi, myContractAddress);

contract.assertOwner(myKey.address)
 .then(contract.assertNotExpired)
 .then(updateMyData)
 .catch(console.error);

assertHasExpired

Resolves provided the contract has expired.

assertNotExpired();

Returns

Promise - A promise to resolve if the contract has expired, and to reject if not.

Resolves With

Resolves with no data if the contract has expired.

Rejects With

	ContractExpiryError - if the contract has not expired

	BlockchainError - if the expiry status could not be retrieved from the blockchain.

Throws

	BlockchainError - if the contract hasn’t been deployed or mapped to a blockchain address.

Example

const myContract = require("../contracts/myContract.json");
const contract = new Contract(myContract.abi, myContractAddress);

contract.terminate(myKey)
 .then(contract.assertHasExpired)
 .then(function(){
 console.log("Double checked. Contract has been terminated.");
 })
 .catch(console.error);

assertCanRead

Resolves provided the given address is permitted to read the given file or directory in the vault controlled by this contract.

assertCanRead(requester, [file]);

Parameters

	requester (Address) - the address of the requester that wants to read the data

	file (Address) - (Optional) the specific file to check. Defaults to the ROOT_DIRECTORY if not given.

Returns

Promise - A promise to resolve if the given address is permitted to read the given file, and to reject if not.

Resolves With

Permissions - the Permissions object representing the permissions byte returned by the SDAC. Only resolves if the requester is permitted.

Rejects With

	PermissionError - if permission is not granted

	BlockchainError - if the expiry status could not be retrieved from the blockchain.

Throws

	BlockchainError - if the contract hasn’t been deployed or mapped to a blockchain address.

Example

const expectedContract = require("../contracts/myContract.json");
const contract = new Contract(expectedContract.abi, customer.contractAddress);
const fileId = "0x0000000000000000000000000000000000000001";

contract.assertBytecode(expectedContract.runtimeBytecode)
 .then(() => { return contract.assertOwner(customer.address) })
 .then(() => { return contract.assertCanRead(myKey.address, fileId) })
 .then(function(){
 console.log("Confirmed customer's contract is valid");
 })
 .catch(console.error);

assertCanWrite

Resolves provided the given address is permitted to write to the given file or directory in the vault controlled by this contract.

assertCanWrite(requester, [file]);

Parameters

	requester (Address) - the address of the requester that wants to write the data

	file (Address) - (Optional) the specific file to check. Defaults to the ROOT_DIRECTORY if not given.

Returns

Promise - A promise to resolve if the given address is permitted to write to the given file, and to reject if not.

Resolves With

Permissions - the Permissions object representing the permissions byte returned by the SDAC. Only resolves if the requester is permitted.

Rejects With

	PermissionError - if permission is not granted

	BlockchainError - if the expiry status could not be retrieved from the blockchain.

Throws

	BlockchainError - if the contract hasn’t been deployed or mapped to a blockchain address.

Example

const expectedContract = require("../contracts/myContract.json");
const contract = new Contract(expectedContract.abi, customer.contractAddress);
const ownersFile = "0x0000000000000000000000000000000000000001";
const resultsFile = "0x0000000000000000000000000000000000000002";

contract.assertBytecode(expectedContract.runtimeBytecode)
 .then(() => { return contract.assertOwner(customer.address) })
 .then(() => { return contract.assertCanRead(myKey.address, ownersFile) })
 .then(() => { return contract.assertCanWrite(myKey.address, resultsFile) })
 .then(function(){
 console.log("Confirmed customer's contract is valid");
 })
 .catch(console.error);

assertCanAppend

Resolves provided the given address is permitted to append to the given file or directory in the vault controlled by this contract.

assertCanAppend(requester, [file]);

Parameters

	requester (Address) - the address of the requester that wants to append the data

	file (Address) - (Optional) the specific file to check. Defaults to the ROOT_DIRECTORY if not given.

Returns

Promise - A promise to resolve if the given address is permitted to append to the given file, and to reject if not.

Resolves With

Permissions - the Permissions object representing the permissions byte returned by the SDAC. Only resolves if the requester is permitted.

Rejects With

	PermissionError - if permission is not granted

	BlockchainError - if the expiry status could not be retrieved from the blockchain.

Throws

	BlockchainError - if the contract hasn’t been deployed or mapped to a blockchain address.

Example

const expectedContract = require("../contracts/myContract.json");
const contract = new Contract(expectedContract.abi, customer.contractAddress);
const ownersFile = "0x0000000000000000000000000000000000000001";
const logFile = "0x0000000000000000000000000000000000000002";

contract.assertBytecode(expectedContract.runtimeBytecode)
 .then(() => { return contract.assertOwner(customer.address) })
 .then(() => { return contract.assertCanRead(myKey.address, ownersFile) })
 .then(() => { return contract.assertCanAppend(myKey.address, logFile) })
 .then(function(){
 console.log("Confirmed customer's contract is valid");
 })
 .catch(console.error);

Class GenericSmartDataAccessContract

Instance of Contract providing an interface to any Smart Data Access Contract. Maps to a contract at the given address using the standard SDAC Interface ABI.

Constructor

Creates a new Contract instance. Connects with the blockchain (if not connected already).

new GenericSmartDataAccessContract(address);

Parameters

	address (Address) - The address of the contract on the blockchain.

Throws

	BlockchainError - if it can’t connect with the blockchain.

Example

const contract = new GenericSmartDataAccessContract(customer.contractAddress);

Functions

setProvider

Overrides the default gateway service to the blockchain (that configured in config.json). Supported URL schemes (protocols) are ws, wss, http and https.

setProvider(url);

Parameters

	url (URL) - url of the blockchain provider

Throws

	BlockchainError - if the url is invalid or the scheme (protocol) is not supported.

Example

const myGateway = { scheme: "https", host: "kovan.infura.com:, port: "" };

datona.blockchain.setProvider(myGateway);

sendTransaction

Promises to publish a transaction on the blockchain. There are three types of transactions: balance transfers between accounts; contract deployment and contract function calls. The Contract class above should be used for contract deployment and calls.

sendTransaction(key, transaction);

Parameters

	key (Key) - the Datona Key object used to sign the transaction

	transaction (Object) - Object containing the transaction

	The Transaction parameter has the following structure:

	
	from (String) - (optional) source address. Will be auto populated from the key parameter if not given.

	to (String) - destination address (account or contract address). Leave undefined if this is a deployment transaction.

	value (Number|String|BN|BigNumber) - eth to transfer to the destination in wei, if any. Can be omitted if this is a contract deployment or call.

	data (String) - hex string data (with 0x prefix) to include in the transaction. If a contract deployment, this is the contract bytecode. If a contract call this is the call information.

	gasPrice (Number) - (optional) the price you are offering to pay per unit of gas in wei. If not given, the gas price will be auto populated using the median gas price of the last few blocks.

	gas (Number|String|BN|BigNumber) - (optional) the maximum amount of gas allowed for the transaction (gas limit). Warning - A high gas limit is used if the gas parameter is not given.

	nonce (Number) - (optional) must be the correct value for the sending address. The EVM expects this nonce to increment each time a transaction is successfully published from the sending address. The nonce will be automatically calculated so it should be left undefined unless you know what you are doing.

Returns

Promise - A promise to publish the transaction.

Resolves With

receipt - An object containing the EVM receipt. Will only resolve if the receipt’s status is 0x01 - will reject if not. See here [https://ethereum.stackexchange.com/questions/6531/structure-of-a-transaction-receipt] for information on the receipt structure.

Rejects With

	BlockchainError - if the transaction is invalid, could not be published or was rejected by the EVM.

Example

const myTransaction = {
 to: "0xc16a409a39EDe3F38E212900f8d3afe6aa6A8929",
 value: 1000,
 data: "0x01020304
}

datona.blockchain.sendTransaction(myKey, myTransaction)
 .then(console.log)
 .catch(console.error);

subscribe

Subscribes the client to receive notification of a new contract deployed to the blockchain with the given code hash. Optionally, the client can receive notification only if the given address is permitted to access the data controlled by the contract.

subscribe(bytecodeHash, callback, [permittedAddress]);

Parameters

	bytecodeHash (Hash) - hash of the runtime bytecode of the new contract to monitor for

	callback (function) - function to call if new contract is found: function callback(contractAddress, bytecodeHash)

	permittedAddress (String) - (Optional) address to check if permitted

callback parameters

	contractAddress (Address) - blockchain address of the new contract

	bytecodeHash (Hash) - (Optional) hash of the runtime bytecode of the new contract. Allows the same callback to be used for multiple subscriptions.

Returns

Hash - unique subscription id (can be used to unsubscribe later).

Throws

	BlockchainError - if web3 cannot be subscribed to

Example

const myContract = require("../contracts/myContract.json");
const subscription = subscribe(datona.crypto.hash(myContract.runtimeBytecode), registerNewCustomer, myKey.address);

function registerNewCustomer(contractAddress) {
 const contract = new Contract(myContract.abi, contractAddress);
 contract.getOwner()
 .then(function(ownerAddress){
 const newCustomer = { owner: ownerAddress, contract: contractAddress };
 customers.push(newCustomer);
 })
 .catch(function(error){
 console.error("Couldn't get owner of new customer contract. Try again later. "+contractAddress+" - "+error.message);
 const newCustomer = { owner: undefined, contract: contractAddress };
 customers.push(newCustomer);
 });
}

unsubscribe

Unsubscribes a previous subscription. The subscription is identified by the subscription id returned from the original call to subscribe.

unsubscribe(subscriptionId);

Parameters

	subscriptionId (Hash) - the subscription to unsubscribe

Returns

uint - the number of subscriptions unsubscribed.

Example

const myContract = require("../contracts/myContract.json");
const subscription = subscribe(datona.crypto.hash(myContract.runtimeBytecode), registerNewCustomer, myKey.address);

...

if(unsubscribe(subscription) == 0) console.error("failed to unsubscribe");

close

Closes the connection to the blockchain. Should be called on program exit if any blockchain functions have been used.

close();

Throws

	BlockchainError - if the connection cannot be closed.

getGasPrice

Returns the median gas price of the last few blocks.

getGasPrice();

Returns

Promise - A promise to return the gas price

Resolves With

String - String representation of the gas price in wei

Example

getGasPrice().then(console.log);

> "20000000000"

datona-vault

Class VaultFilename

A parsed vault filename with extracted file and directory parts and other properties. See the VaultFile type.

Properties

	fullFilename (String) - the original filename passed to the constructor

	file (String) - the file part of the filename.

	directory (String) - the directory part of the filename (an Address).

	hasDirectory (boolean) - true if the filename has a directory part.

	isValid (boolean) - true if the filename is valid in accordance with the protocol.

Constructor

Parses and validates a filename string, setting the properties above.

new VaultFilename(filename);

Parameters

	filename (String) - name of the vault file to parse

Example

const vaultFile = new VaultFilename("0x0000000000000000000000000000000000000002/my_file.txt");
if (!vaultFile.isValid) throw new datona.errors.TypeError("invalid filename");

Class RemoteVault

Represents a single vault within a vault server controlled by a single S-DAC. Is designed to be used by data owners to create, update and delete a vault, and by requesters to access a vault. Extends Class DatonaConnector.

Properties

	url (URL) - the URL given to the constructor

	remoteAddress (Address) - the public blockchain address of the remote data vault server given to the constructor.

Constructor

Creates a new RemoteVault instance with a network client suitable for the given url scheme.

new RemoteVault(url, contractAddress, localPrivateKey, remoteAddress);

Parameters

	url (URL) - the URL object identifying the server, port and URI scheme of the remote data vault server

	contractAddress (Address) - The address of the contract that controls this vault

	localPrivateKey (Key) - The Key object used to sign any transactions

	remoteAddress - the public blockchain address of the remote data vault server. Used for verifying received responses.

Throws

	VaultError - if the url scheme is unsupported

Example

const url = { scheme: "file", host: "datonavault.com", port: "8643" };
const myContractAddress = "0x008Cd346b65F5aFa306Ef9160a84455D308e6851";
const remoteAddress = "0x41A60F71063CD7c9e5247d3E7d551f91f94b5C3b";
const remoteVault = new RemoteVault(url, myContractAddress, myKey, remoteAddress);

create

Promises to create a new vault on the remote data vault server containing the given data. This method creates the data request, signs it, initiates the vault request and handles the vault response.

create([options]);

Parameters

	options (Object) - (Optional) this object will be passed unchanged to the remote data vault server.

Returns

Promise - A promise to create this vault and resolve if successful. Promises to reject if the vault was not created for any reason.

Resolves With

{ txn: VaultResponse, signatory: Address } - the server response transaction and signatory’s address, validated to confirm it was sent by the remoteAddress given in the constructor. See VaultResponse. If the response is an error type then the promise will reject instead.

Rejects With

	ContractOwnerError - if you are not the vault owner (the contract owner)

	ContractExpiryError - if the contract has expired

	VaultError - if the vault server failed to create the vault for any reason.

	CommunicationError - if communication with the vault server failed

	TransactionError - if the structure of the server response was invalid or was not signed by the vault server’s remote.

	MalformedRequestError - if the request form is invalid or fields are missing or invalid

	InvalidSignatureError - if the signatory cannot be recovered from the signature

Example

const remoteVault = new RemoteVault(url, myContractAddress, myKey, remoteAddress);

remoteVault.create()
 .then(() => { console.log("vault created successfully") })
 .catch(console.error);

write

Promises to write data to the vault, to a specific file if specified. This method creates the data request, signs it, initiates the vault request and handles the vault response.

write(data, [file], [options]);

Parameters

	data (Object) - the data to be stored

	file (Address) - (Optional) the specific file to write to. Defaults to the ROOT_DIRECTORY if not given.

	options (Object) - (Optional) this object will be passed unchanged to the remote data vault server.

Returns

Promise - A promise to write the data to the given file in this vault and resolve if successful. Promises to reject if the vault was not updated for any reason.

Resolves With

{ txn: VaultResponse, signatory: Address } - the server response transaction and signatory’s address, validated to confirm it was sent by the remoteAddress given in the constructor. See VaultResponse. If the response is an error type then the promise will reject instead.

Rejects With

	ContractOwnerError - if you are not the vault owner (the contract owner)

	ContractExpiryError - if the contract has expired

	VaultError - if the vault server failed to update the vault for any reason.

	CommunicationError - if communication with the vault server failed

	TransactionError - if the structure of the server response was invalid or was not signed by the vault server’s remote.

	MalformedRequestError - if the request form is invalid or fields are missing or invalid

	InvalidSignatureError - if the signatory cannot be recovered from the signature

Example

const remoteVault = new RemoteVault(url, myContractAddress, myKey, remoteAddress);

remoteVault.write("Hello World", "0xF000000000000000000000000000000000000002")
 .then(() => { console.log("vault updated successfully") })
 .catch(console.error);

append

Promises to append data to the vault, to a specific file or directory if specified. This method creates the data request, signs it, initiates the vault request and handles the vault response.

When appending data to a directory, the data is written to a new file in that directory. The file parameter must contain a unique file name, e.g. “0x0000000000000000000000000000000000000001/myfile1.txt”

append(data, [file], [options]);

Parameters

	data (Object) - the data to be appended

	file (Address) - (Optional) the specific file to write to. Defaults to the ROOT_DIRECTORY if not given.

	options (Object) - (Optional) this object will be passed unchanged to the remote data vault server.

Returns

Promise - A promise to write the data to the given file in this vault and resolve if successful. Promises to reject if the vault was not updated for any reason.

Resolves With

{ txn: VaultResponse, signatory: Address } - the server response transaction and signatory’s address, validated to confirm it was sent by the remoteAddress given in the constructor. See VaultResponse. If the response is an error type then the promise will reject instead.

Rejects With

	ContractOwnerError - if you are not the vault owner (the contract owner)

	ContractExpiryError - if the contract has expired

	VaultError - if the vault server failed to update the vault for any reason.

	CommunicationError - if communication with the vault server failed

	TransactionError - if the structure of the server response was invalid or was not signed by the vault server’s remote.

	MalformedRequestError - if the request form is invalid or fields are missing or invalid

	InvalidSignatureError - if the signatory cannot be recovered from the signature

Example

const remoteVault = new RemoteVault(url, myContractAddress, myKey, remoteAddress);

remoteVault.append("some additional info", "0xF000000000000000000000000000000000000002")
 .then(() => { console.log("vault appended successfully") })
 .catch(console.error);

read

Promises to retrieve the data from this vault if permitted. This method creates the data request, signs it, initiates the vault request and handles the vault response.

read([file], [options]);

Parameters

	file (Address) - (Optional) the specific file or directory to read from. Defaults to the ROOT_DIRECTORY if not given.

	options (Object) - (Optional) this object will be passed unchanged to the remote data vault server.

Returns

Promise - A promise to retrieve the data and resolve if successful. Promises to reject if the vault could not be accessed for any reason.

Resolves With

Object - the data returned from the vault in whatever format it was written.

Rejects With

	PermissionError - if you are not permitted to access the vault

	ContractExpiryError - if the contract has expired

	VaultError - if the vault server could not handle the request for any reason.

	CommunicationError - if communication with the vault server failed

	TransactionError - if the structure of the server response was invalid or was not signed by the vault server’s remote.

	MalformedRequestError - if the request form is invalid or fields are missing or invalid

	InvalidSignatureError - if the signatory cannot be recovered from the signature

Example

const remoteVault = new RemoteVault(url, myContractAddress, myKey, remoteAddress);

remoteVault.read("0xF000000000000000000000000000000000000002")
 .then((data) => { console.log("vault contains: "+data))
 .catch(console.error);

delete

Promises to delete this vault and its data provided the contract has expired or has been terminated. This method creates the data request, signs it, initiates the vault request and handles the vault response.

delete([options]);

Parameters

	options (Object) - (Optional) this object will be passed unchanged to the remote data vault server.

Returns

Promise - A promise to delete the vault and resolve if successful. Promises to reject if the vault could not be deleted for any reason.

Resolves With

{ txn: VaultResponse, signatory: Address } - the server response transaction and signatory’s address, validated to confirm it was sent by the remoteAddress given in the constructor. See VaultResponse. If the response is an error type then the promise will reject instead.

Rejects With

	ContractOwnerError - if you are not the vault owner (the contract owner)

	ContractExpiryError - if the contract has not expired

	VaultError - if the vault server could not handle the request for any reason.

	CommunicationError - if communication with the vault server failed

	TransactionError - if the structure of the server response was invalid or was not signed by the vault server’s remote.

	MalformedRequestError - if the request form is invalid or fields are missing or invalid

	InvalidSignatureError - if the signatory cannot be recovered from the signature

Example

const remoteVault = new RemoteServer(url, myContractAddress, myKey, remoteAddress);

remoteVault.delete()
 .then(() => { console.log("vault deleted") })
 .catch(console.error);

Class VaultKeeper

Guardian of a Vault Data Server. Designed to be used by developers of data vault servers, whether cloud based or locally hosted.

All create, update, access and delete requests go through the Vault Keeper, where they are approved or rejected against the Datona Smart Data Access Protocol. If approved and permission granted by the vault’s Smart Data Access Contract, the VaultKeeper passes the raw request to the VaultDataServer object given to the constructor.

Properties

	vaultDataServer (VaultDataServer) - the VaultDataServer instance given to the constructor

Constructor

Creates a new VaultKeeper instance

new VaultKeeper(vaultDataServer, key);

Parameters

	vaultDataServer (VaultDataServer) - the VaultDataServer instance that provides the data server service.

	key (Key) - The vault server’s private key as a Key object. Used to sign any transactions. The signature is used by the remote client to authenticate the vault server and so this key must correspond to the vault server’s public identity.

Example

DataServer = require('MyDataServer.js');
const vaultManager = new DataServer();
const vaultKeeper = new VaultKeeper(vaultManager, myKey);

handleSignedRequest

Primary method to process a signed VaultRequest from a client. Decodes and processes the request, checks the validity of the signature, validates the request and passes the raw data request to the VaultDataServer instance given to the constructor.

handleSignedRequest(signedRequestStr);

Parameters

	signedRequestStr (SignedTransaction) - the data to be stored

Returns

Promise - A promise to resolve with a signed success or error VaultResponse.

Resolves With

SignedTransaction - containing the VaultResponse and transaction signature, ready to send back to the client.

Rejects With

Does not reject. Any error is converted to signed error VaultResponse and resolved.

Example

const myDataVaultServer = net.createServer(connection);

connection(c){

 c.on('data', (buffer) => {
 const data = buffer.toString();
 vaultKeeper.handleSignedRequest(data)
 .then(function(response){
 c.write(response);
 c.end();
 })
 .catch(console.error); // should never happen
 });

}

createVault

Can be used if handleSignedRequest is not appropriate. Handles a valid create request. This method checks the validity of the signature and validates the request before creating a new vault via the VaultDataServer.

createVault(request, signatory);

Parameters

	request (VaultRequest) - VaultRequest of type ‘create’ containing the contract address and data to put in the vault

	signatory (Address) - signatory the address that signed the request. Must be the owner of the contract.

Returns

Promise - A promise to create the vault and resolve a success or error response.

Resolves With

SignedTransaction - containing the VaultResponse and transaction signature, ready to send back to the client.

Rejects With

Does not reject. Any error is converted to signed error VaultResponse and resolved.

An error response will be resolved if:

	the request is not a valid “create” request

	the signature is invalid;

	the signatory is not the owner of the contract

	the contract has expired

	the VaultDataServer returns an error

Example

const {txn, signatory} = comms.decodeTransaction(signedRequestStr);
if (txn.requestType == "create") {
 vaultKeeper.createVault(txn, signatory)
 .then(myServer.sendResponse)
 .catch(console.error); // should never happen
}

writeVault

Can be used if handleSignedRequest is not appropriate. Handles a valid write request. This method checks the validity of the signature and validates the request before updating the vault via the VaultDataServer.

writeVault(request, signatory);

Parameters

	request (VaultRequest) - VaultRequest of type ‘write’ containing the contract address, file to write and data to put in the vault

	signatory (Address) - signatory the address that signed the request. Must be the owner of the contract.

Returns

Promise - A promise to write to the vault and resolve a success or error response.

Resolves With

SignedTransaction - containing the VaultResponse and transaction signature, ready to send back to the client.

Rejects With

Does not reject. Any error is converted to signed error VaultResponse and resolved.

An error response will be resolved if:

	the request is not a valid “create” request

	the signature is invalid;

	the signatory is not the owner of the contract

	the contract has expired

	the VaultDataServer returns an error

Example

const {txn, signatory} = comms.decodeTransaction(signedRequestStr);
if (txn.requestType == "write") {
 vaultKeeper.writeVault(txn, signatory)
 .then(myServer.sendResponse)
 .catch(console.error); // should never happen
}

appendVault

Can be used if handleSignedRequest is not appropriate. Handles a valid append request. This method checks the validity of the signature and validates the request before updating the vault via the VaultDataServer.

appendVault(request, signatory);

Parameters

	request (VaultRequest) - VaultRequest of type ‘append’ containing the contract address, file to append and data to put in the vault

	signatory (Address) - signatory the address that signed the request. Must be the owner of the contract.

Returns

Promise - A promise to append to the vault and resolve a success or error response.

Resolves With

SignedTransaction - containing the VaultResponse and transaction signature, ready to send back to the client.

Rejects With

Does not reject. Any error is converted to signed error VaultResponse and resolved.

An error response will be resolved if:

	the request is not a valid “append” request

	the signature is invalid;

	the signatory is not the owner of the contract

	the contract has expired

	the VaultDataServer returns an error

Example

const {txn, signatory} = comms.decodeTransaction(signedRequestStr);
if (txn.requestType == "append") {
 vaultKeeper.appendVault(txn, signatory)
 .then(myServer.sendResponse)
 .catch(console.error); // should never happen
}

readVault

Can be used if handleSignedRequest is not appropriate. Handles a valid read request. This method checks the validity of the signature and validates the request before accessing the vault via the VaultDataServer.

readVault(request, signatory);

Parameters

	request (VaultRequest) - VaultRequest of type ‘read’ containing the contract address and file to read

	signatory (Address) - signatory the address that signed the request. Must be permitted to access the vault.

Returns

Promise - A promise to access the vault and resolve a success or error response.

Resolves With

SignedTransaction - containing the VaultResponse and transaction signature, ready to send back to the client. A successful VaultResponse will contain the data from the vault.

Rejects With

Does not reject. Any error is converted to a signed error VaultResponse and resolved.

An error response will be resolved if:

	the request is not a valid “access” request

	the signature is invalid;

	the signatory is not permitted to access the vault (contract’s isPermitted function returns false)

	the contract has expired

	the VaultDataServer returns an error

Example

const {txn, signatory} = comms.decodeTransaction(signedRequestStr);
if (txn.requestType == "read") {
 vaultKeeper.readVault(txn, signatory)
 .then(myServer.sendResponse)
 .catch(console.error); // should never happen
}

deleteVault

Can be used if handleSignedRequest is not appropriate. Handles a valid delete request. This method checks the validity of the signature and validates the request before deleting the vault via the VaultDataServer. The contract must have expired (contract’s hasExpired function returns true) before a vault can be deleted.

deleteVault(request, signatory);

Parameters

	request (VaultRequest) - VaultRequest of type ‘delete’ containing the contract address and data to put in the vault

	signatory (Address) - signatory the address that signed the request. Must be the owner of the contract.

Returns

Promise - A promise to delete the vault and resolve a success or error response.

Resolves With

SignedTransaction - containing the VaultResponse and transaction signature, ready to send back to the client.

Rejects With

Does not reject. Any error is converted to signed error VaultResponse and resolved.

An error response will be resolved if:

	the request is not a valid “delete” request

	the signature is invalid;

	the signatory is not the owner of the contract

	the contract has not expired

	the VaultDataServer returns an error

Example

const {txn, signatory} = comms.decodeTransaction(signedRequestStr);
if (txn.requestType == "create") {
 vaultKeeper.deleteVault(txn, signatory)
 .then(myServer.sendResponse)
 .catch(console.error); // should never happen
}

Interface VaultDataServer

To use the Datona VaultKeeper, data vault developers must develop a class of this type that provides the data vault’s data server capability. For example, a class could be developed to interface with an existing database, a remote file server or a local file system. If extending this interface, override the functions supported by your data server.

create

Must create a new vault identified by the given contract address. Must fail if the vault already exists.

create(contract, [options]);

Parameters

	contract (Address) - the address of the contract to identify the vault. Future write, append, read and delete requests will identify the vault using this contract address.

	options (Object) - (Optional) options from the end user. Allows the server developer to provide server-specific features to end user applications.

Returns

Promise - A promise to create the vault. Must reject with a VaultError object if unsuccessful.

write

Must unconditionally write the given data to the given file in the vault identified by the given contract address, overwriting its contents if it already exists. Will fail if the vault does not exist.

write(contract, file, data, [options]);

Parameters

	contract (Address) - the address of the contract to identify the vault.

	file (Address) - the specific file to write to.

	data (Object) - the data to store in the vault

	options (Object) - (Optional) options from the end user. Allows the server developer to provide server-specific features to end user applications.

Returns

Promise - A promise to write the data to the file. Must reject with a VaultError object if unsuccessful.

createFile

The same as write but only if the file does not already exist. Will fail if the vault does not exist or the file already exists.

createFile(contract, file, data, [options]);

Parameters

	contract (Address) - the address of the contract to identify the vault.

	file (Address) - the specific file to write to.

	data (Object) - the data to write to the file

	options (Object) - (Optional) options from the end user. Allows the server developer to provide server-specific features to end user applications.

Returns

Promise - A promise to write the data to the file. Must reject with a VaultError object if the vault does not exist or the file already exists.

append

Must unconditionally append the given data to the given file in the vault identified by the given contract address, creating the file if it does not exist. Will fail if the vault does not exist.

append(contract, file, data, [options]);

Parameters

	contract (Address) - the address of the contract to identify the vault.

	file (Address) - the specific file to write to.

	data (Object) - the data to append to the file

	options (Object) - (Optional) options from the end user. Allows the server developer to provide server-specific features to end user applications.

Returns

Promise - A promise to append the data to the file. Must reject with a VaultError object if unsuccessful.

read

Must unconditionally return the data from the given file in the vault identified by the given contract address. Will fail if the vault or file does not exist.

read(contract, file, [options]);

Parameters

	contract (Address) - the address of the contract to identify the vault.

	file (Address) - the specific file to write to.

	options (Object) - (Optional) options from the end user. Allows the server developer to provide server-specific features to end user applications.

Returns

Promise - A promise to resolve the vault contents in the same form given when the file was written. Must reject with a VaultError object if unsuccessful.

readDir

Must promise to unconditionally return a list of the names of files in the given directory within the vault identified by the given contract address. Will fail if the vault does not exist.

read(contract, file, [options]);

Parameters

	contract (Address) - the address of the contract to identify the vault.

	file (Address) - the specific file to write to.

	options (Object) - (Optional) options from the end user. Allows the server developer to provide server-specific features to end user applications.

Throws

VaultError - if the vault does not exist.

Returns

Promise - A promise to resolve the directory listing in the format [<filename1>][\n<filename2>]... Equivalent to ls -c1 in linux. If the directory does not exist then then the empty string is resolved. Must reject with a VaultError object if unsuccessful.

delete

Must promise to unconditionally delete the vault identified by the given contract address, including all files within. Will fail if the vault does not exist.

deleteVault(contract, [options]);

Parameters

	contract (Address) - the address of the contract to identify the vault.

	options (Object) - (Optional) options from the end user. Allows the server developer to provide server-specific features to end user applications.

Returns

Promise - A promise to delete the vault and all data within it. Must reject with a VaultError object if unsuccessful.

datona-crypto

The datona-crypto component provides all the datona-lib cryptographic classes and functions.

Class Key

Encapsulates a private key and provides cryptographic functions that use it. The Key is a core class of datona-lib.

Properties

	privateKey (PrivateKey) - the private key given to the constructor

	publicKey (PublicKey) - the public key derived from the private key

	address (Address) - the public blockchain address derived from the private key

Constructor

Constructs the instance with the given private key.

new Key(privateKey);

Parameters

	privateKey (PrivateKey) - 32-byte private key in hex (64 hex characters)

Example

const myKey = new Key("e68e40257cfee330038c49637fcffff82fae04b9c563f4ea071c20f2eb55063c");
console.log(myKey.address);
> 0x41A60F71063CD7c9e5247d3E7d551f91f94b5C3b

sign

Signs the given hash with this key.

sign(hash);

Parameters

	hash (Hash) - 32-byte hash to sign in hex (64 hex characters)

Returns

DatonaSignature - the signature of the given hash derived from this key

Example

const signature = myKey.sign(hash("Hello World!"));

encrypt

Encrypts the given data using the Elliptic Curve Integrated Encryption Scheme. The symmetric encryption key is generated from this private key and the given public key. The resulting encrypted data can be decrypted with this public key and the private part of the given public key.

The key derivation function used is the standard datona crypto hash function. The encryption scheme used is AES-GCM. ECIES has been selected instead of an asymmetric scheme like RSA for performance reasons.

encrypt(publicKeyTo, data);

Parameters

	publicKeyTo (address) public part of the remote key that will be used to decrypt this data

	data (bytes) data to encrypt (e.g. as a string)

Returns

bytes - the encrypted data

Example

const encryptedData = myKey.encrypt(theirPublicKey, "Hello World"))

decrypt

Decrypts the given data that has been encrypted with the encrypt function. The given public key must be the public part of the private key used to encrypt the data and this key must be the private part of the public key used to encrypt the data.

decrypt(publicKeyFrom, data);

Parameters

	publicKeyFrom (address) public part of the remote key that was used to encrypt this data

	data (bytes) the encrypted data

Returns

bytes - the decrypted data

Example

const key1 = new Key("e68e40257cfee330038c49637fcffff82fae04b9c563f4ea071c20f2eb55063c");
const key2 = new Key("b692ef5519cd87854b9bd97dd47a8929cbe473fe7a0da53e4ec79efec540cd2b");
const encryptedData = key1.encrypt(key2.publicKey, "Hello World"));
const decryptedData = key2.decrypt(key1.publicKey, encryptedData));
assert(decryptedData == "Hello World");

Functions

generateKey

Generates a new Key object with a random private key. NB: This function does not use a true random source. Use only for experimental and test purposes.

generateKey();

Returns

Key - a new Key object with a random private key.

Example

const myPrivateKey = datona.crypto.generateKey();

sign

Signs the given hash using the given private key.

sign(hash, privateKey);

Parameters

	hash (Hash) - 32-byte hash to sign in hex (64 hex characters)

	privateKey (PrivateKey) - 32-byte private key in hex (64 hex characters)

Returns

DatonaSignature - the signature of the given hash derived from the given key

Example

const myPrivateKey = "e68e40257cfee330038c49637fcffff82fae04b9c563f4ea071c20f2eb55063c";
const signature = sign(hash("Hello World!"), myPrivateKey);

verify

Verifies that the signatory of the given hash and signature matches the given address

verify(hash, signature, address);

Parameters

	hash (Hash) - 32-byte hash to sign in hex (64 hex characters)

	signature (DatonaSignature) - 65-byte DatonaSignature in hex (130 hex characters)

	address (Address) - expected signatory address to verify against

Returns

bool - true if signatory matches the given address

Throws

	InvalidHashError if the hash is invalid

	InvalidSignatureError if the signatory could not be recovered

Example

const myKey = new Key("e68e40257cfee330038c49637fcffff82fae04b9c563f4ea071c20f2eb55063c");
const myHash = hash("Hello World!");
const signature = myKey.sign(myHash);
const matches = verify(myHash, signature, myKey.address);

console.log(matches);
> true

recover

Recovers the address of the signatory of the given hash and signature

recover(hash, signature);

Parameters

	hash (Hash) - 32-byte hash to sign in hex (64 hex characters)

	signature (DatonaSignature) - 65-byte DatonaSignature in hex (130 hex characters)

Returns

Address - address of the signatory (with leading 0x)

Throws

	InvalidHashError if the hash is invalid

	InvalidSignatureError if the signatory could not be recovered

Example

const myKey = new Key("e68e40257cfee330038c49637fcffff82fae04b9c563f4ea071c20f2eb55063c");
const myHash = hash("Hello World!");
const signature = myKey.sign(myHash);
const address = recover(myHash, signature);

console.log(address);
> 0x41A60F71063CD7c9e5247d3E7d551f91f94b5C3b

console.log(myKey.address == address);
> true

hash

Generates a keccak256 hash of the given data string

hash(data);

Parameters

	data (Buffer) - the data to be hashed

Returns

Hash - hash of the given data as a 32-byte hex string (64 hex characters)

Example

const myHash = hash("Hello World!");

console.log(myHash);
> 3ea2f1d0abf3fc66cf29eebb70cbd4e7fe762ef8a09bcc06c8edf641230afec0

fileToHash

Generates a keccak256 hash of the given file’s contents. Can handle files of any length.

fileToHash(path, nonce);

Parameters

	path (String) - the file path

	nonce (String) - (Optional) if present the nonce is appended to the file contents to form part of the hash

Returns

Promise - A promise to resolve with the hash of the file contents

Resolves With

Hash - hash of the given data as a 32-byte hex string (64 hex characters)

Rejects With

	FileSystemError - if the file cannot be read

Example

fileToHash("../myFiles/myFile.txt")
 .then((hash) => { console.log("hash="+hash) })
 .catch(console.error);

> hash=3ea2f1d0abf3fc66cf29eebb70cbd4e7fe762ef8a09bcc06c8edf641230afec0

calculateContractAddress

Generates a contract address

calculateContractAddress(ownerAddress, nonce);

Parameters

	ownerAddress (Address) - the blockchain address of the deployer

	nonce (uint) - the owner’s next transaction nonce

Returns

Address - blockchain address of the contract

Example

const contractAddress = calculateContractAddress(myKey.address, 1);

publicKeyToAddress

Calculates the address from a public key

publicKeyToAddress(publicKey);

Parameters

	publicKey (Uint8Array) - public key as a byte buffer

Returns

Address - blockchain address of the public key

Example

const address = publicKeyToAddress(myKey.publicKey);

hexToUint8Array

Basic conversion function to convert a hex string to a Uint8Array

hexToUint8Array(hex);

Parameters

	hex (String) - string of hex characters (without 0x prefix)

Returns

Uint8Array - Uint8Array representation of the hex string

Example

const array = hexToUint8Array("010203fdfeff");

uint8ArrayToHex

Basic conversion function to convert a Uint8Array to a hex string

uint8ArrayToHex(array);

Parameters

	array (Uint8Array) - array to convert

Returns

String - hex representation of the array (without 0x prefix)

Example

const myArray = new Uint8Array([1, 2, 3, 253, 254, 255]);
const hex = uint8ArrayToHex(myArray);
console.log(hex)

> 010203fdfeff

datona-comms

The datona-comms component implements the Datona application layer protocol, providing classes and functions to facilitate communication between two datona enabled software applications.

Class SmartDataAccessRequest

Encapsulates a Smart Data Access request from a Requester to an Owner. This class validates the request and allows the user to accept or reject the request. If accept or reject is called, this class connects to the Requester’s remote server to send the response.

Properties

	data (Object) - the transaction data object decoded from the signed transaction given to the constructor

	remoteAddress (Address) - the public blockchain address of the remote server, as decoded from the signed transaction given to the constructor

Constructor

Decodes and validates a raw request transaction from a requester, creating a new SmartDataAccessRequest instance.

new SmartDataAccessRequest(signedTxnStr, localPrivateKey);

Parameters

	signedTxnStr (String) - The raw, signed request from the Requester

	localPrivateKey (Key) - The Key object used to sign any transaction responses

Throws

	TransactionError - if the general transaction structure or signature is invalid

	RequestError - if the transaction is not a SmartDataAccessRequestPacket type or does not have the necessary request data

Example

const request = new SmartDataAccessRequest(rawTxn, myKey);

accept

Sends a SmartDataAccessResponse to the requester, giving the blockchain address of the SDAC and the URL of the vault that contains the data. Before responding to the requester it is expected that the contract is already deployed on the blockchain and a vault has already been created with the shared data.

accept(contractAddress, vaultUrl);

Parameters

	contractAddress (Address) - The blockchain address of the deployed SDAC

	vaultUrl (URL) - The URL of the vault holding the data

Returns

Promise - a promise to return the remote server response.

Resolves With

{ txn: Object, signatory: Address } - the server response transaction and signatory’s address, validated to confirm it was sent by the requester (i.e. the same signatory as the original request).

Rejects With

	CommunicationError - if communication with the requester’s server failed

	TransactionError - if the structure of the server response was invalid or was not signed by the requester.

	InvalidTransactionError - if the server response is not a valid GeneralServerResponse.

Example

const request = new SmartDataAccessRequest(rawTxn, myKey);
const vaultUrl = { scheme: "file", host: "datonavault.com", port: "8643" };

// Read contract bytecode and ABI from file system and create a Contract object
const contractSourceCode = require("./contracts/" + request.contract.hash);
const contract = new datona.blockchain.Contract(contractSourceCode.abi);

// Function to create a new vault and store the data. Returns a Promise.
function createAndDeployVault(){
 const vault = new datona.vault.RemoteVault(vaultUrl, contract.address, myPrivateKey);
 return vault.create("Hello World!");
}

// Function to send the contract address and vault URL to the requester. Returns a Promise.
function informRequester(){
 return request.accept(contract.address, vaultUrl);
}

return contract.deploy(contractSourceCode.bytecode, request.signatory)
 .then(createAndDeployVault })
 .then(informRequester)
 .then(console.log)
 .catch(console.error);

reject

Sends a SmartDataAccessResponse to the requester rejecting the request. This is not strictly necessary since the requester cannot rely on receiving a response. However, it is polite!

reject([reason]);

Parameters

	reason (String) - (Optional) the reason for rejecting the request

Returns

Promise - a promise to return the remote server response.

Resolves With

{ txn: Object, signatory: Address } - the server response transaction and signatory’s address, validated to confirm it was sent by the requester (i.e. the same signatory as the original request).

Rejects With

	CommunicationError - if communication with the requester’s server failed

	TransactionError - if the structure of the server response was invalid or was not signed by the requester.

	InvalidTransactionError - if the server response is not a valid GeneralServerResponse.

Example

const request = new SmartDataAccessRequest(rawTxn, myKey);
request.reject("you are sharing my data with mail spammers")
 .then(console.log)
 .catch(console.error);

Class DatonaConnector

Enables communications with a remote server, abstracting away the underlying network protocols. Supported protocols are: file (plain tcp connection), ws (websocket) and http. Encrypted protocols, such as https and wss, will be supported in the future.

Designed to be used as a superclass, this class is extended by the SmartDataAccessRequest and Class VaultFilename classes.

Properties

	remoteAddress (Address) - the public blockchain address of the remote server, as given to the constructor

Constructor

Creates a new DatonaConnector instance with a network client suitable for the given url scheme.

new DatonaConnector(url, localPrivateKey, remoteAddress);

Parameters

	url (URL) - the URL object identifying the server, port and URI scheme

	localPrivateKey (Key) - The Key object used to sign any transactions

	remoteAddress - the public blockchain address of the remote application. Used for verifying received responses.

Throws

	RequestError - if the url scheme is unsupported

Example

const url = { scheme: "file", host: "datonavault.com", port: "8643" };
const remoteAddress = "0x41A60F71063CD7c9e5247d3E7d551f91f94b5C3b";
const remoteServer = new DatonaConnector(url, myKey, remoteAddress);

send

Serialises the given object, signs it and returns a promise to send it to the requester.

send(txn);

Parameters

	txn (Object) - the transaction to sign and send

Returns

Promise - a promise to return the remote server response.

Resolves With

{ txn: Object, signatory: Address } - the server response transaction and signatory’s address, validated to confirm it was sent by the remoteAddress given in the constructor.

Rejects With

	CommunicationError - if communication with the requester’s server failed

	TransactionError - if the structure of the server response was invalid or was not signed by the requester.

Example

const txn = { txnType: "VaultRequest", requestType: "access", contract: myContractAddress };

remoteServer.send(txn)
 .then(console.log)
 .catch(console.error);

Functions

encodeTransaction

Signs the given transaction object and encodes it ready for transmission.

encodeTransaction(txn, key);

Parameters

	txn (Object) - The transaction to encode and sign

	key (Key) - The key used to sign the transaction

Returns

String - a SignedTransaction object as a JSON formatted string

Example

const myKey = new datona.crypto.Key("b94452c533536500e30f2253c96d123133ca1cbdb987556c2dc229573a2cd53c");

const txn = { txnType: "GeneralResponse", responseType: "success" };

const signedTxnStr = encodeTransaction(txn, myKey);

decodeTransaction

Decodes the given transaction object and returns the data payload.

decodeTransaction(signedTxnStr);

Parameters

	signedTxnStr (String) - The JSON formatted SignedTransaction

Returns

Object - object containing the transaction and the signatory’s address

{
 txn: Object,
 signatory: Address
}

Throws

TransactionError - if the transaction data or signature is invalid

Example

try {
 const txn = decodeTransaction(signedTxnStr);
 console.log("transaction type: "+txn.txn.txnType);
 console.log("signatory: "+txn.signatory);
}
catch (error) {
 console.error(error.toString());
}

validateResponse

Validates the a pre-decoded response transaction against the GeneralServerResponse format. If the response is valid and the response type

validateResponse(txn, [expectedTxnType]);

Parameters

	txn (Object) - the transaction to validate

	expectedTxnType (String) - (optional) the expected txnType of the response to override the default of GeneralResponse

Throws

InvalidTransactionError - if the transaction structure is invalid or the txnType does not match the expectedTxnType.

Example

try {
 validateResponse(myTransaction, "VaultResponse");
 // no error was thrown so must be a valid VaultResponse
}
catch (error) {
 console.error(error.toString());
}

createSuccessResponse

Constructs a GeneralServerResponse Success transaction, optionally of the given type.

createSuccessResponse([txnType]);

Parameters

	txnType (String) - (optional) txnType to override default of GeneralResponse

Returns

Object - (optional) txnType the GeneralServerResponse transaction

Example

const response = createSuccessResponse();
const sdarResponse = createSuccessResponse("SmartDataAccessResponse");

createErrorResponse

Constructs a GeneralServerResponse Error transaction, optionally of the given type.

createErrorResponse(error, [txnType]);

Parameters

	error (Error) - the error to insert in the transaction

	txnType (String) - (optional) txnType to override default of GeneralResponse

Returns

Object - (optional) txnType the GeneralServerResponse transaction

Example

...
catch (error) {
 const response = createErrorResponse(error);
 const signedTxnStr = encodeTransaction(response, myKey);
 ...
}

Core Types

	Type

	Definition

	Address

	Blockchain address in the format /^0x[0-9a-fA-F]{40}$/

	DatonaSignature

	ECDSA secp256k1 signature - 130 hex-character string representing 64 byte signature (s) concatenated with 1 byte recovery (r) in that order

	Hash

	keccak256 hash in the format /^[0-9a-fA-F]{64}$/

	PrivateKey

	Private key in the format /^[0-9a-fA-F]{64}$/

	PublicKey

	Public key in the format /^[0-9a-fA-F]{130}$/

	URL

	Server URL of the form: { scheme: String, host: String, port: Number }

	VaultFile

	Name of a file or directory in a vault. See VaultFile below.

VaultFile

A VaultFile name has the form [directory/]<file>

If the directory part is present it must be a single blockchain address and the file part can be any POSIX file name except . and ..
If not present then the file part must be a single blockchain address.
Nested directories are not permitted.

Example valid files:

	0x0000000000000000000000000000000000000001

	0x0000000000000000000000000000000000000002/my_file.txt

	0x0000000000000000000000000000000000000002/0x0000000000000000000000000000000000000001

Example invalid files:

	my_file.txt

	0x0000000000000000000000000000000000000002/0x0000000000000000000000000000000000000001/my_file.txt

Application Layer Protocol

Version: 0.0.2

WARNING - This protocol is experimental and subject to change without notice. The version will be updated if any change is made.

This protocol uses Semantic Versioning [https://semver.org/spec/v2.0.0.html].

Smart Data Access Contract Interface

All S-DACs must comply with the following interface. In future the protocolVersion may be used to support backward compatibility.

pragma solidity ^0.6.3;

abstract contract SDAC {

 string public constant DatonaProtocolVersion = "0.0.2";

 // constants describing the permissions-byte structure of the form d----rwa.
 byte public constant NO_PERMISSIONS = 0x00;
 byte public constant ALL_PERMISSIONS = 0x07;
 byte public constant READ_BIT = 0x04;
 byte public constant WRITE_BIT = 0x02;
 byte public constant APPEND_BIT = 0x01;
 byte public constant DIRECTORY_BIT = 0x80;

 address public owner = msg.sender;

 // File based d----rwa permissions. Assumes the data vault has validated the requester's ID.
 // Address(0) is a special file representing the vault's root
 function getPermissions(address requester, address file) public virtual view returns (byte);

 // returns true if the contract has expired either automatically or has been manually terminated
 function hasExpired() public virtual view returns (bool);

 // terminates the contract if the sender is permitted and any termination conditions are met
 function terminate() public virtual;

}

General Protocol

SignedTransaction

All Datona transactions are sent as a SignedTransaction, which contains the raw Transaction and a digital signature.

{
 "txn": Transaction,
 "signature": DatonaSignature
}

where:

	signature is the DatonaSignature of the keccak256 hash of the txn element.

Transaction

All transactions in the Datona Protocol have the following JSON structure:

{
 "txnType": String,
 ...
}

	Field

	Description

	txnType

	(String). The name of the transaction type used to identify the type of transaction.

GeneralServerResponse

A basic acknowledgement or error response from a server to a client.

Acknowledgement

{
 "txnType": "GeneralResponse",
 "responseType":"success"
}

	Field

	Description

	responseType

	(String) The type of the response: either “success” or “error”

Error

Error responses contain the fields of a DatonaError.

{
 "txnType": "GeneralResponse",
 "responseType":"error",
 "error": {
 "name": String,
 "message": String,
 "details": String
 }
}

	Field

	Description

	name

	(String) Name of error

	message

	(String) Natural language error message

	details

	(String) Detailed error message, usually not suitable for displaying to the average user. Possibly empty.

Smart Data Access Request Protocol

A SmartDataAccessRequest is sent from a requester to a data owner, to request data to be shared in a vault controlled by a Smart Data Access Contract. The data owner can respond with a SmartDataAccessResponse accepting or rejecting the request.

The format of the response is specific to the requester’s use case. Therefore, the SmartDataAccessRequest contains user defined acceptTransaction and rejectTransaction elements that the requester is free to tailor as needed.

If accepting the request, the owner’s application software is required to construct a SmartDataAccessResponse using the template given in the acceptTransaction element and extend it with (a) the url of the data vault server holding the data, and (b) the blockchain address of the deployed S-DAC.

If rejecting the request, the owner’s application software is required to construct a SmartDataAccessResponse using the template given in the rejectTransaction and extend it with the reason for the rejection.

SmartDataAccessRequestPacket

The following JSON gives the minimal template spec for a Smart Data Access request from Requester to Owner.

{
 "txnType": "SmartDataAccessRequest",
 "version": "0.0.1",
 "contract": {
 "hash": Hash
 },
 "api": {
 "url": {
 "scheme": String,
 "host": String,
 "port": uint
 },
 "acceptTransaction": {},
 "rejectTransaction": {}
 }
}

	Field

	Description

	version

	(String) The version of the Smart Data Access Request protocol with which this request is compliant.

	contract

	(Object) The requested S-DAC and associated details

	contract.hash

	(Hash) keccak256 hash of the requested S-DAC’s runtime bytecode

	api

	(Object). Details of how the owner-end software should respond to the request.

	api.url

	(URL) URL of the Requester’s server that will handle the response. See Type Definitions.

	api.acceptTransaction

	(Object) Template for the transaction that will be returned to the requester if the request is accepted. Requester specific - for example can be configured to include an internal reference number.

Shall be extended with the following fields:

	contract: Address of the S-DAC deployed on the blockchain, staring with 0x

	vaultUrl: URL of the vault service that is hosting the data, in the same format as api.url defined above.

	api.rejectTransaction

	(Object) Template for the transaction that will be returned to the requester if the request is rejected. Will be extended with the following fields:

	reason: String message containing the reason for the rejection

SmartDataAccessResponse

An accept response consists of copying the acceptTransaction object from the SmartDataAccessRequestPacket and adding the following elements:

{
 "txnType": "SmartDataAccessResponse",
 "responseType": "accept",
 "contract": Address,
 "vaultAddress": Address,
 "vaultUrl": {
 "scheme": String,
 "host": String,
 "port": uint
 }
 ... elements copied from the acceptTransaction object (if any)
}

	Field

	Description

	contract

	(Address) Blockchain address of the deployed S-DAC

	vaultAddress

	(Address) Public address of the vault server (used to authenticate all comms with the server)

	vaultUrl

	(URL) URL of the Requester’s server that will handle the response.

A reject response consists of copying the rejectTransaction object from the SmartDataAccessRequestPacket and adding the following elements:

{
 "txnType": "SmartDataAccessResponse",
 "responseType": "reject",
 "reason": String
}
... elements copied from the rejectTransaction object (if any)

Vault Request Protocol

VaultRequest packets are sent to a Data Vault Server to create, write, append, read or delete a vault. The server promises to respond to any request with a VaultResponse packet indicating success or error. The protocol consists of a single request and response.

VaultRequest

One of the following JSON requests:

create

{
 "txnType": "VaultRequest",
 "requestType": "create",
 "contract": Address,
}

write

{
 "txnType": "VaultRequest",
 "requestType": "write",
 "contract": Address,
 "data": Object
}

append

{
 "txnType": "VaultRequest",
 "requestType": "append",
 "contract": Address,
 "data": Object
}

read

{
 "txnType": "VaultRequest",
 "requestType": "read",
 "contract": Address
}

delete

{
 "txnType": "VaultRequest",
 "requestType": "delete",
 "contract": Address
}

	Field

	Description

	type

	(String) The type of request: either “create”, “write”, “append”, “read” or “delete”

	contract

	(Address) The blockchain address of the Smart Data Access Contract that controls the vault. The S-DAC must already be deployed on the blockchain.

	data

	Any type. The data to store in the vault or retrieved from the vault

VaultResponse

Every Vault Request from the client is responded to with a Vault Response. There are two types of response - success and error.

success

A success response conforms with the GeneralServerResponse Acknowledgement format. If responding to a read request, the response will additionally contain a data field with returned vault contents.

{
 "txnType": "VaultResponse",
 "responseType":"success",
 "data": Object
}

error

An error response conforms with the GeneralServerResponse Error format.

{
 "txnType": "VaultResponse",
 "responseType":"error",
 "error": {
 "name": String,
 "message": String,
 "details": String
 }
}

Errors

Class DatonaError

Root class for all errors thrown by Datona software. Extends Error.

Properties

	name (String) - the name of the error. Same as the class name.

	message (String) - single line error message suitable for display to the end user

	details (String) - (Optional) detailed error message unsuitable for display to the end user

Constructor

Creates a new RemoteVault instance with a network client suitable for the given url scheme.

new DatonaError(message, details);

Parameters

	message (String) - single line error message suitable for display to the end user

	details (String) - (Optional) detailed error message unsuitable for display to the end user

Example

const url = { scheme: "file", host: "datonavault.com", port: "8643" };
const myContractAddress = "0x008Cd346b65F5aFa306Ef9160a84455D308e6851";
const remoteAddress = "0x41A60F71063CD7c9e5247d3E7d551f91f94b5C3b";
const remoteVault = new RemoteVault(url, myContractAddress, myKey, remoteAddress);

toJSON

Converts this error into a JSON formatted string, excluding the stacktrace.

toJSON();

Returns

String - A JSON formatted string representation of this error with name, message and details.

toObject

Converts this error into a simple struct with just name, message and details, excluding the stacktrace.

toObject();

Returns

{ name: String, message: String, details: String }

toString

Converts this error into a single line string suitable for logging, excluding the stacktrace. If the error details property is longer than 96 chars then it will be truncated.

toString();

Returns

String - String version of this object

Classes of DatonaError

All error classes listed below are derived from DatonaError and have the same constructor parameters. Each class may have its own subclass allowing catch blocks to switch based on error class.

Internal Errors

InternalError Class of exception for defensive programming checks. These errors are not expected to be raised and indicate a low-level software problem that needs raising with the software developer.

Developer Errors

DeveloperError. Class of exception for software usage errors. These errors indicate a problem with how the developer is interfacing with or using this software.

Subclasses

ArgumentError The caller of this method passed an invalid or missing argument

TypeError The caller of this method passed an argument with an invalid type

InvalidHashError The caller of this method passed an invalid hash

Cryptographic Errors

CryptographicError Class of cryptographic errors

Subclasses

InvalidSignatureError The caller of this method passed an invalid hash

HashingError The data could not be hashed

Blockchain Errors

BlockchainError Class of errors related to blockchain access and contract management

Subclasses

ContractOwnerError This request must be made by the contract owner

ContractTypeError Indicates the contract class is invalid

ContractExpiryError This request must be made by the contract owner

PermissionError Indicates the signatory does not have permission to perform this action

Transaction Errors

TransactionError Class of errors related to a communications transaction

Subclasses

InvalidTransactionError Indicates the transaction type is invalid

MalformedTransactionError Indicates the transaction has an invalid form

RequestError Indicates the transaction contains an invalid request

CommunicationError Class of errors related to a communications transaction

Vault Errors

VaultError Class of errors related to vault management and guardianship

Subclasses

FileSystemError Error resulting from filesystem access

Index

 _static/ajax-loader.gif

_images/primary_use_case-sequence_diagram.png
Datona Protocol v0.0.2

Request
Data

Access
Data

Update

Data

Write
Records

Delete
Data

s

Delete Vault

Periodically check contract

Use data
Delete data

Owner Vault Blockchain Requester
Server H
: Apply for service :
pPly h
D R RE T R 1
View request '
Accept request Deploy contract :
Create vault i
> Validate contract '
< :
Update Vault E
> H
T i Or: Monitor for New Contracts M
Either: Inform Requester ' CTTTTTTT T2
L : : "
! ! ' Validate contract
' ' [> -
: : : Read Vault File M
: < ’
E Check permissions :
f f Return data
1 A -2 >
E Write or Append E : :
: to Vault File or Directory ' :
: > Check permissions JZ :
: : : Write or Append :
! . ' to Vault File or Directory !
H |:|‘ Check permissions H :
H D ity 3 H
E Terminate Contract (if permitted) E »é i

_images/vault_server-class_diagram.png
datona-vault.VaultKeeper

Key:

User Defined
Datona Lib

+ constructor(VaultDataServer, Key)
+ handleSignedTransaction(txn) : Promise

&<

ethe

)

= DataServer

AV

<<interface>>
datona-vault.VaultDataServer

+ create(contract) : Promise

+ write(contract, file, data) : Promise

+ append(contract, file, data) : Promise
+ read(contract, file) : Promise

+ readDir(contract, dir) : Promise

+ delete(contract) : Promise

_static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/down.png

_static/file.png

nav.xhtml

 Table of Contents

 		
 Welcome to the Datona-Lib documentation

 		
 What Is Smart Data Access?

 		
 How Does It Work?

 		
 Smart Data Access Contracts

 		
 Life-Cycle of Smart Data

 		
 How To Use

 		
 Requesters

 		
 Building a Smart Data Access Contract

 		
 Building a Smart Data Access Request

 		
 Creating a Server to Handle a Smart Data Access Response

 		
 Monitoring For New Contracts

 		
 Accessing a Customer’s Data

 		
 Owner App Developers

 		
 Receiving a Smart Data Access Request

 		
 Accepting a Smart Data Access Request

 		
 Accessing a Vault

 		
 Writing to a Vault

 		
 Deleting a Vault

 		
 Vault Service Providers

 		
 Creating a Data Vault Server

 		
 datona-blockchain

 		
 Constants

 		
 Class Permissions

 		
 Properties

 		
 Constructor

 		
 canRead

 		
 canWrite

 		
 canAppend

 		
 isDirectory

 		
 Class Contract

 		
 Constants

 		
 Properties

 		
 Constructor

 		
 setAddress

 		
 deploy

 		
 getOwner

 		
 hasExpired

 		
 getPermissions

 		
 canRead

 		
 canWrite

 		
 canAppend

 		
 getBytecode

 		
 call

 		
 transact

 		
 terminate

 		
 assertBytecode

 		
 assertOwner

 		
 assertNotExpired

 		
 assertHasExpired

 		
 assertCanRead

 		
 assertCanWrite

 		
 assertCanAppend

 		
 Class GenericSmartDataAccessContract

 		
 Constructor

 		
 Functions

 		
 setProvider

 		
 sendTransaction

 		
 subscribe

 		
 unsubscribe

 		
 close

 		
 getGasPrice

 		
 datona-vault

 		
 Class VaultFilename

 		
 Properties

 		
 Constructor

 		
 Class RemoteVault

 		
 Properties

 		
 Constructor

 		
 create

 		
 write

 		
 append

 		
 read

 		
 delete

 		
 Class VaultKeeper

 		
 Properties

 		
 Constructor

 		
 handleSignedRequest

 		
 createVault

 		
 writeVault

 		
 appendVault

 		
 readVault

 		
 deleteVault

 		
 Interface VaultDataServer

 		
 create

 		
 write

 		
 createFile

 		
 append

 		
 read

 		
 readDir

 		
 delete

 		
 datona-crypto

 		
 Class Key

 		
 Properties

 		
 Constructor

 		
 sign

 		
 encrypt

 		
 decrypt

 		
 Functions

 		
 generateKey

 		
 sign

 		
 verify

 		
 recover

 		
 hash

 		
 fileToHash

 		
 calculateContractAddress

 		
 publicKeyToAddress

 		
 hexToUint8Array

 		
 uint8ArrayToHex

 		
 datona-comms

 		
 Class SmartDataAccessRequest

 		
 Properties

 		
 Constructor

 		
 accept

 		
 reject

 		
 Class DatonaConnector

 		
 Properties

 		
 Constructor

 		
 send

 		
 Functions

 		
 encodeTransaction

 		
 decodeTransaction

 		
 validateResponse

 		
 createSuccessResponse

 		
 createErrorResponse

 		
 Core Types

 		
 VaultFile

 		
 Application Layer Protocol

 		
 Smart Data Access Contract Interface

 		
 General Protocol

 		
 SignedTransaction

 		
 Transaction

 		
 GeneralServerResponse

 		
 Smart Data Access Request Protocol

 		
 SmartDataAccessRequestPacket

 		
 SmartDataAccessResponse

 		
 Vault Request Protocol

 		
 VaultRequest

 		
 VaultResponse

 		
 Errors

 		
 Class DatonaError

 		
 Properties

 		
 Constructor

 		
 toJSON

 		
 toObject

 		
 toString

 		
 Classes of DatonaError

 		
 Internal Errors

 		
 Developer Errors

 		
 Cryptographic Errors

 		
 Blockchain Errors

 		
 Transaction Errors

 		
 Vault Errors

_static/minus.png

_static/plus.png

_static/up-pressed.png

_static/up.png

